首页 > 最新文献

Biocybernetics and Biomedical Engineering最新文献

英文 中文
Probabilistic and explainable modeling of Phase–Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis 脑电图中相位-相位跨频耦合模式的概率和可解释建模。在阅读障碍诊断中的应用
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.09.003
Diego Castillo-Barnes , Nicolás J. Gallego-Molina , Marco A. Formoso , Andrés Ortiz , Patrícia Figueiredo , Juan L. Luque
This work explores the intricate neural dynamics associated with dyslexia through the lens of Cross-Frequency Coupling (CFC) analysis applied to electroencephalography (EEG) signals evaluated from 48 seven-year-old Spanish readers from the LEEDUCA research platform. The analysis focuses on CFS (Cross-Frequency phase Synchronization) maps, capturing the interaction between different frequency bands during low-level auditory processing stimuli. Then, making use of Gaussian Mixture Models (GMMs), CFS activations are quantified and classified, offering a compressed representation of EEG activation maps. The study unveils promising results specially at the Theta-Gamma coupling (Area Under the Curve = 0.821), demonstrating the method’s sensitivity to dyslexia-related neural patterns and highlighting potential applications in the early identification of dyslexic individuals.
这项研究通过对来自 LEEDUCA 研究平台的 48 名七岁西班牙读者的脑电图(EEG)信号进行跨频耦合(CFC)分析,探索与阅读障碍相关的复杂神经动态。分析的重点是跨频相位同步图(CFS),它捕捉了低级听觉处理刺激过程中不同频段之间的相互作用。然后,利用高斯混合模型(GMMs)对 CFS 激活进行量化和分类,从而提供脑电图激活图的压缩表示。该研究特别在 Theta-Gamma 耦合(曲线下面积 = 0.821)方面取得了令人鼓舞的结果,证明了该方法对与阅读障碍相关的神经模式的敏感性,并突出了在早期识别阅读障碍患者方面的潜在应用。
{"title":"Probabilistic and explainable modeling of Phase–Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis","authors":"Diego Castillo-Barnes ,&nbsp;Nicolás J. Gallego-Molina ,&nbsp;Marco A. Formoso ,&nbsp;Andrés Ortiz ,&nbsp;Patrícia Figueiredo ,&nbsp;Juan L. Luque","doi":"10.1016/j.bbe.2024.09.003","DOIUrl":"10.1016/j.bbe.2024.09.003","url":null,"abstract":"<div><div>This work explores the intricate neural dynamics associated with dyslexia through the lens of Cross-Frequency Coupling (CFC) analysis applied to electroencephalography (EEG) signals evaluated from 48 seven-year-old Spanish readers from the LEEDUCA research platform. The analysis focuses on CFS (Cross-Frequency phase Synchronization) maps, capturing the interaction between different frequency bands during low-level auditory processing stimuli. Then, making use of Gaussian Mixture Models (GMMs), CFS activations are quantified and classified, offering a compressed representation of EEG activation maps. The study unveils promising results specially at the Theta-Gamma coupling (Area Under the Curve = 0.821), demonstrating the method’s sensitivity to dyslexia-related neural patterns and highlighting potential applications in the early identification of dyslexic individuals.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 814-823"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automating synaptic plasticity analysis: A deep learning approach to segmenting hippocampal field potential signal 突触可塑性分析自动化:分割海马场电位信号的深度学习方法
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.09.005
Sabri Altunkaya
Hippocampal field potentials are widely used in research on neurodegenerative diseases, epilepsy, neuropharmacology, and particularly long- and short-term synaptic plasticity. To conduct these studies, it is necessary to identify specific components within hippocampal field potential signals. However, manually marking the relevant signal points for analysis is a time-consuming, error-prone, and subjective process. Currently, there is no specialized software dedicated to automating this task. In this study, three different recurrent neural network-based deep learning architectures were examined for the automatic segmentation of hippocampal field potential signals in two separate experimental studies. In the first experimental study, 10,836 epochs of field potential signals recorded from 54 rats were used, and in the second experimental study, field potential signals with noise added to the above data at different rates were used. The best model achieved an average f-score of 98.1% on noise-free data and 97.15% on data with noise, highlighting its robustness in real-world scenarios. Furthermore, we assessed system stability using the repeated holdout method, which randomly split the data into training and testing sets 100 times, and each time trained a new version of the system. As a result, the proposed system was proven to be reliable and generalizable by showing similar average scores and low variability across all 100 iterations of the test.
海马场电位被广泛应用于神经退行性疾病、癫痫、神经药理学,特别是长短期突触可塑性的研究。要进行这些研究,就必须识别海马场电位信号中的特定成分。然而,手动标记相关信号点进行分析是一个耗时、易出错且主观的过程。目前,还没有专门的软件来自动完成这项任务。本研究在两项独立的实验研究中,考察了三种不同的基于递归神经网络的深度学习架构,用于自动分割海马场电位信号。在第一项实验研究中,使用了 54 只大鼠记录的 10836 个历时场电位信号;在第二项实验研究中,使用了以不同速率向上述数据添加噪声的场电位信号。最佳模型在无噪声数据上的平均 f 分数为 98.1%,在有噪声数据上的平均 f 分数为 97.15%,这突出表明了该模型在实际应用中的鲁棒性。此外,我们还使用重复保持法评估了系统的稳定性,该方法将数据随机分为训练集和测试集 100 次,每次训练一个新版本的系统。结果表明,所提出的系统在所有 100 次迭代测试中显示出相似的平均得分和较低的变异性,从而证明了该系统的可靠性和通用性。
{"title":"Automating synaptic plasticity analysis: A deep learning approach to segmenting hippocampal field potential signal","authors":"Sabri Altunkaya","doi":"10.1016/j.bbe.2024.09.005","DOIUrl":"10.1016/j.bbe.2024.09.005","url":null,"abstract":"<div><div>Hippocampal field potentials are widely used in research on neurodegenerative diseases, epilepsy, neuropharmacology, and particularly long- and short-term synaptic plasticity. To conduct these studies, it is necessary to identify specific components within hippocampal field potential signals. However, manually marking the relevant signal points for analysis is a time-consuming, error-prone, and subjective process. Currently, there is no specialized software dedicated to automating this task. In this study, three different recurrent neural network-based deep learning architectures were examined for the automatic segmentation of hippocampal field potential signals in two separate experimental studies. In the first experimental study, 10,836 epochs of field potential signals recorded from 54 rats were used, and in the second experimental study, field potential signals with noise added to the above data at different rates were used. The best model achieved an average f-score of 98.1% on noise-free data and 97.15% on data with noise, highlighting its robustness in real-world scenarios. Furthermore, we assessed system stability using the repeated holdout method, which randomly split the data into training and testing sets 100 times, and each time trained a new version of the system. As a result, the proposed system was proven to be reliable and generalizable by showing similar average scores and low variability across all 100 iterations of the test.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 804-813"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profiled delivery of bicarbonate during weekly cycle of hemodialysis 在每周一次的血液透析过程中以曲线方式输送碳酸氢盐
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.10.002
Mauro Pietribiasi , John K. Leypoldt , Monika Wieliczko , Malgorzata Twardowska-Kawalec , Malgorzata Debowska , Jolanta Malyszko , Jacek Waniewski

Background

Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (CD,bic), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (CP,bic).

Methods

We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of CD,bic to get the pre-dialytic CP,bic in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in CD,bic after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week).

Results

The response to the model-based prescription was different whether the average CD,bic during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average CD,bic during the Intervention Week, a significant fraction achieved the target (22 ≤ CP,bic ≤ 24 mEq/L). In the group with higher average CD,bic, the interventions were effective only in increasing post-dialytic CP,bic. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma CP,bic.

Conclusions

The interventions were effective mostly in patients who needed to lower their pre-dialytic CP,bic. The resistance of the system to increasing pre-dialytic CP,bic in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.
背景在血液透析(HD)过程中输送碳酸氢盐旨在纠正终末期肾病患者的代谢性酸中毒。我们测试了透析液中碳酸氢盐浓度(CD,bic)的改良处方,旨在达到最佳的透析前碳酸氢盐血浆浓度(CP,bic)。方法我们使用数学模型制定了个性化的血液透析治疗方案,包括:1)调整 CD,bic 以使透析前 CP,bic 在规定范围内;2)在透析间歇期较长的时间之前增加碳酸氢盐负荷;3)两小时后单步增加 CD,bic。结果无论干预周的平均 CD、bic 值高于还是低于测试周的恒定值,患者对基于模型的处方的反应都不同。在干预周期间平均 CD、bic 值较低的患者中,有相当一部分达到了目标值(22 ≤ CP、bic ≤ 24 mEq/L)。在平均 CD,bic较高的组别中,干预措施仅对提高治疗后的 CP,bic 有效。结论:干预措施主要对需要降低透析前 CP,bic 的患者有效。在其他患者中,系统对增加透析前 CP、bic 的阻力可能是由于呼吸或氢气生成的改变造成的,而我们的模型没有考虑到这一点。
{"title":"Profiled delivery of bicarbonate during weekly cycle of hemodialysis","authors":"Mauro Pietribiasi ,&nbsp;John K. Leypoldt ,&nbsp;Monika Wieliczko ,&nbsp;Malgorzata Twardowska-Kawalec ,&nbsp;Malgorzata Debowska ,&nbsp;Jolanta Malyszko ,&nbsp;Jacek Waniewski","doi":"10.1016/j.bbe.2024.10.002","DOIUrl":"10.1016/j.bbe.2024.10.002","url":null,"abstract":"<div><h3>Background</h3><div>Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (C<sub>D,bic</sub>), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (C<sub>P,bic</sub>).</div></div><div><h3>Methods</h3><div>We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of C<sub>D,bic</sub> to get the pre-dialytic C<sub>P,bic</sub> in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in C<sub>D,bic</sub> after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week).</div></div><div><h3>Results</h3><div>The response to the model-based prescription was different whether the average C<sub>D,bic</sub> during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average C<sub>D,bic</sub> during the Intervention Week, a significant fraction achieved the target (22 ≤ C<sub>P,bic</sub> ≤ 24 mEq/L). In the group with higher average C<sub>D,bic</sub>, the interventions were effective only in increasing post-dialytic C<sub>P,bic</sub>. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma C<sub>P,bic</sub>.</div></div><div><h3>Conclusions</h3><div>The interventions were effective mostly in patients who needed to lower their pre-dialytic CP<sub>,bic</sub>. The resistance of the system to increasing pre-dialytic C<sub>P,bic</sub> in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 836-843"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms 使用机器学习算法,利用活体皮肤病变的近红外光谱数据诊断皮肤癌
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.10.001
Matheus B. Rocha , Flavio P. Loss , Pedro H. da Cunha , Madson Poltronieri Zanoni , Leandro M. de Lima , Isadora Tavares Nascimento , Isabella Rezende , Tania R.P. Canuto , Luciana de Paula Vieira , Renan Rossoni , Maria C.S. Santos , Patricia Lyra Frasson , Wanderson Romão , Paulo R. Filgueiras , Renato A. Krohling
Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) of skin lesions. Near-Infrared (NIR) spectroscopy may provide an alternative source of information to automated CAD of skin lesions to be used with the modern techniques of machine learning and deep learning (MDL). One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) and standard algorithms as SVM and PLS-DA were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate that the best performance was obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction and data augmentation with Generative Adversarial Networks (GAN) providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions in vivo using NIR spectral data.
皮肤病变分为良性和恶性。在恶性肿瘤中,黑色素瘤是一种侵袭性很强的癌症,也是导致死亡的主要原因。因此,早期诊断皮肤癌是非常必要的。最近几年,人们对皮肤病变的计算机辅助诊断(CAD)越来越感兴趣。近红外(NIR)光谱可为皮肤病变的自动计算机辅助诊断提供另一种信息来源,可与现代机器学习和深度学习(MDL)技术结合使用。将 MDL 应用于光谱学的主要限制之一是缺乏公共数据集。据我们所知,目前还没有关于皮肤病变的近红外光谱数据的公共数据集,因此我们努力收集、注释和分析了一个名为 NIR-SC-UFES 的新数据集,该数据集为皮肤癌的近红外光谱数据分类提供了黄金标准。接下来,研究了机器学习算法 XGBoost、CatBoost、LightGBM、一维卷积神经网络(1D-CNN)以及 SVM 和 PLS-DA 等标准算法,以对癌症和非癌症皮肤病变进行分类。实验结果表明,在使用标准正态变异(SNV)进行预处理、特征提取和使用生成式对抗网络(GAN)进行数据增强后,LightGBM 的性能最佳,其平衡准确率为 0.839,召回率为 0.851,精确度为 0.852,F-score 为 0.850。所获得的结果表明,利用近红外光谱数据对体内皮肤病变患者进行自动分诊是皮肤病变计算机辅助诊断的第一步。
{"title":"Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms","authors":"Matheus B. Rocha ,&nbsp;Flavio P. Loss ,&nbsp;Pedro H. da Cunha ,&nbsp;Madson Poltronieri Zanoni ,&nbsp;Leandro M. de Lima ,&nbsp;Isadora Tavares Nascimento ,&nbsp;Isabella Rezende ,&nbsp;Tania R.P. Canuto ,&nbsp;Luciana de Paula Vieira ,&nbsp;Renan Rossoni ,&nbsp;Maria C.S. Santos ,&nbsp;Patricia Lyra Frasson ,&nbsp;Wanderson Romão ,&nbsp;Paulo R. Filgueiras ,&nbsp;Renato A. Krohling","doi":"10.1016/j.bbe.2024.10.001","DOIUrl":"10.1016/j.bbe.2024.10.001","url":null,"abstract":"<div><div>Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) of skin lesions. Near-Infrared (NIR) spectroscopy may provide an alternative source of information to automated CAD of skin lesions to be used with the modern techniques of machine learning and deep learning (MDL). One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) and standard algorithms as SVM and PLS-DA were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate that the best performance was obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction and data augmentation with Generative Adversarial Networks (GAN) providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions <em>in vivo</em> using NIR spectral data.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 824-835"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of 3D-printed cellular shoe soles on plantar pressure during running − Experimental and numerical studies
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.11.004
Paweł Baranowski , Aleksandra Kapusta , Paweł Płatek , Marcin Sarzyński
The paper explores the potential of additive manufacturing (AM), experiments and simulations to develop a personalized shoe sole, with cellular topology used as the insert that minimizes the plantar pressure during running. Five different topologies were manufactured by Fused Filament Fabrication 3D printing technique using thermoplastic polyurethane TPU 95 filaments and tested experimentally and using FEA under compression conditions. The error between the maximum peak force and specific energy absorbed (SEA) from the model and experiment were less than 4.0 % and 6.0 %, respectively. A deformable FE foot model was developed, which was validated against data from the literature on balanced standing and the landing impact test carried out in the study. For the first case, the predicted maximum pressure (Ppeak = 0.20 MPa) was positioned between the data presented in previous papers (0.16 MPa ÷ 0.30 MPa). In the second case, the experimentally measured and numerically predicted force peak values were nearly identical: 1760 N and 1720 N, respectively, falling with the range of 2.2 ÷ 2.5 BW similarly to other studies. Finally, a shoe sole design was proposed based on these topologies, which was simulated in the rearfoot impact to investigate the deformation of the sole and its influence on the foot plantar pressure peak and its distribution. The findings indicated that the sole with cellular structure could drastically reduce plantar pressure and improve overall footwear performance. This research provides valuable guidance and insights for designing, modelling, and simulating customized shoe sole manufactured using the 3D printing technique.
{"title":"Influence of 3D-printed cellular shoe soles on plantar pressure during running − Experimental and numerical studies","authors":"Paweł Baranowski ,&nbsp;Aleksandra Kapusta ,&nbsp;Paweł Płatek ,&nbsp;Marcin Sarzyński","doi":"10.1016/j.bbe.2024.11.004","DOIUrl":"10.1016/j.bbe.2024.11.004","url":null,"abstract":"<div><div>The paper explores the potential of additive manufacturing (AM), experiments and simulations to develop a personalized shoe sole, with cellular topology used as the insert that minimizes the plantar pressure during running. Five different topologies were manufactured by Fused Filament Fabrication 3D printing technique using thermoplastic polyurethane TPU 95 filaments and tested experimentally and using FEA under compression conditions. The error between the maximum peak force and specific energy absorbed (SEA) from the model and experiment were less than 4.0 % and 6.0 %, respectively. A deformable FE foot model was developed, which was validated against data from the literature on balanced standing and the landing impact test carried out in the study. For the first case, the predicted maximum pressure (<em>P<sub>peak</sub></em> = 0.20 MPa) was positioned between the data presented in previous papers (0.16 MPa ÷ 0.30 MPa). In the second case, the experimentally measured and numerically predicted force peak values were nearly identical: 1760 N and 1720 N, respectively, falling with the range of 2.2 ÷ 2.5 BW similarly to other studies. Finally, a shoe sole design was proposed based on these topologies, which was simulated in the rearfoot impact to investigate the deformation of the sole and its influence on the foot plantar pressure peak and its distribution. The findings indicated that the sole with cellular structure could drastically reduce plantar pressure and improve overall footwear performance. This research provides valuable guidance and insights for designing, modelling, and simulating customized shoe sole manufactured using the 3D printing technique.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 858-873"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight beat score map method for electrocardiogram-based arrhythmia classification 基于心电图的心律失常分类的轻量级节拍积分图法
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 DOI: 10.1016/j.bbe.2024.11.002
Kyeonghwan Lee, Jaewon Lee, Miyoung Shin
We recently investigated beat score map (BSM)-based methods for electrocardiogram (ECG)-based arrhythmia classification. Although BSM-based methods show impressive performance, they are somewhat resource-intensive owing to the arrangement of beat score vectors generated from 1D ECG sequences with zero-padding across time points. To address this issue, we propose a lightweight BSM (Lw-BSM) method that significantly reduces the size of the original BSM while capturing the characteristics of beat arrangement patterns as does the original BSM. Specifically, two types of Lw-BSMs are generated without zero-padding and evaluated for multiclass arrhythmia prediction. Experimental results on two public datasets, MIT-BIH and SPH, demonstrate that arrhythmia classification using Lw-BSM images is quite comparable to that using the original BSM images as an input to CNN-based classification models. At the same time, the image size can be reduced significantly. Moreover, it is observed that this approach is almost insensitive to the selection of the R-peak detection algorithm, showing stable performance across different R-peak algorithms.
我们最近研究了基于节拍积分图(BSM)的心电图心律失常分类方法。虽然基于 BSM 的方法表现出令人印象深刻的性能,但由于要对从一维心电图序列生成的节拍得分向量进行跨时间点的零填充排列,这些方法在一定程度上占用了大量资源。为了解决这个问题,我们提出了一种轻量级 BSM(Lw-BSM)方法,它能显著缩小原始 BSM 的大小,同时捕捉到与原始 BSM 一样的节拍排列模式特征。具体来说,我们生成了两种不带零填充的轻量级 BSM,并对其进行了多类心律失常预测评估。在 MIT-BIH 和 SPH 两个公共数据集上的实验结果表明,使用 Lw-BSM 图像进行心律失常分类与使用原始 BSM 图像作为基于 CNN 的分类模型的输入相当。与此同时,图像的大小也大大缩小。此外,据观察,这种方法对 R 峰检测算法的选择几乎不敏感,在不同的 R 峰算法中表现出稳定的性能。
{"title":"Lightweight beat score map method for electrocardiogram-based arrhythmia classification","authors":"Kyeonghwan Lee,&nbsp;Jaewon Lee,&nbsp;Miyoung Shin","doi":"10.1016/j.bbe.2024.11.002","DOIUrl":"10.1016/j.bbe.2024.11.002","url":null,"abstract":"<div><div>We recently investigated beat score map (BSM)-based methods for electrocardiogram (ECG)-based arrhythmia classification. Although BSM-based methods show impressive performance, they are somewhat resource-intensive owing to the arrangement of beat score vectors generated from 1D ECG sequences with zero-padding across time points. To address this issue, we propose a lightweight BSM (Lw-BSM) method that significantly reduces the size of the original BSM while capturing the characteristics of beat arrangement patterns as does the original BSM. Specifically, two types of Lw-BSMs are generated without zero-padding and evaluated for multiclass arrhythmia prediction. Experimental results on two public datasets, MIT-BIH and SPH, demonstrate that arrhythmia classification using Lw-BSM images is quite comparable to that using the original BSM images as an input to CNN-based classification models. At the same time, the image size can be reduced significantly. Moreover, it is observed that this approach is almost insensitive to the selection of the R-peak detection algorithm, showing stable performance across different R-peak algorithms.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 844-857"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities 验证用于动态活动期间心肺监测的人体传感器网络
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-23 DOI: 10.1016/j.bbe.2024.09.002
Alessandra Angelucci , Federica Camuncoli , Federica Dotti , Filippo Bertozzi , Manuela Galli , Marco Tarabini , Andrea Aliverti
One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.
在可穿戴设备领域,准确测量动态活动中的生理参数是一大挑战。这项工作的目的是提出一个完全可穿戴的无线人体传感器网络(WBSN),用于动态活动中的心肺监测,并根据参考测量系统对组成 WBSN 的设备进行验证。WBSN 由三个用于检测呼吸频率(RR)的惯性测量单元(IMU)和一个用于检测脉搏频率(PR)的第四个单元组成。30 名健康志愿者(17 名男性,平均年龄(25.9 ± 6.0)岁,平均体重(68.7 ± 9.7)公斤,平均身高(170.9 ± 9.5)厘米)参加了由步行、跑步和骑自行车组成的验证方案。参与者必须同时佩戴 WBSN 设备和参考仪器。事实证明,基于 IMU 的系统对骑车和跑步时的 RR 监测特别有效,整个组群的 RMSE 为 3.77 bpm。步行时的呼吸信号显示出与步幅相似的频率内容,因此很难正确过滤所需的信号内容。PR 与参考心率监测仪显示出良好的一致性。该系统利用有关运动的信息,通过一种特殊的信号处理算法改进了动态活动中的呼吸频率估计。
{"title":"Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities","authors":"Alessandra Angelucci ,&nbsp;Federica Camuncoli ,&nbsp;Federica Dotti ,&nbsp;Filippo Bertozzi ,&nbsp;Manuela Galli ,&nbsp;Marco Tarabini ,&nbsp;Andrea Aliverti","doi":"10.1016/j.bbe.2024.09.002","DOIUrl":"10.1016/j.bbe.2024.09.002","url":null,"abstract":"<div><div>One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 794-803"},"PeriodicalIF":5.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000676/pdfft?md5=7b1f1f42608cbb77aef909206d34b316&pid=1-s2.0-S0208521624000676-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative evaluation of the effect of circle of willis structures on cerebral hyperperfusion: A multi-scale model analysis 威利斯圈结构对脑过度灌注影响的定量评估多尺度模型分析
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-20 DOI: 10.1016/j.bbe.2024.08.005
Suqin Huang , Bao Li , Jincheng Liu , Liyuan Zhang , Hao Sun , Huanmei Guo , Yanping Zhang , Fuyou Liang , Yanjun Gong , Youjun Liu

Cerebral hyperperfusion occurs in some patients after superficial temporal artery–middle cerebral artery bypass surgery. However, there is uncertainty about cerebral hyperperfusion after bypass for patients with different Circle of Willis (CoW) structures.

This study established a lumped parameter model coupled with one–dimensional model (0–1D), whilst a deep learning model for predicting pressure drop (DLM–PD) caused by stenosis and a cerebral autoregulation model (CAM) were introduced into the model. Based on this model, 9 CoW structural models before and after bypass was constructed, to investigate the effects of different CoW structures on cerebral hyperperfusion after bypass. The model and the results were further verified by clinical data.

The MSE of mean flow rates from 0–1D model calculation and from clinically measurement was 1.4%. The patients exhibited hyperperfusion in three CoW structures after bypass: missing right anterior segment of anterior cerebral artery (mRACA1) (13.96% hyperperfusion), mRACA1 and foetal-type right anterior segment of posterior cerebral artery (12.81%), and missing anterior communicating artery and missing left posterior communicating artery (112.41%). The error between the average flow ratio from the model calculations and fromclinical measurement was less than 5%.

This study demonstrated that the CoW structure had a significant impact on hyperperfusion after bypass. The general 0–1D model coupled with DLM–PD and CAM proposed in this study, could accurately simulate the hemodynamic environment of different CoW structures before and after bypass, which might help physicians identify high–risk patients with hyperperfusion before surgery, and promote the development of non-invasive diagnosis and treatment of cerebrovascular diseases.

一些患者在接受颞浅动脉-大脑中动脉搭桥手术后会出现脑过度灌注。本研究建立了一个与一维模型(0-1D)耦合的集合参数模型,同时在模型中引入了一个用于预测血管狭窄导致的压力下降(DLM-PD)的深度学习模型和一个脑自动调节模型(CAM)。在此基础上,构建了分流前后的 9 个 CoW 结构模型,以研究不同 CoW 结构对分流后脑高灌注的影响。0-1D 模型计算得出的平均流速与临床测量得出的平均流速的 MSE 为 1.4%。分流术后,患者的三个CoW结构出现了高灌注:大脑前动脉右前段缺失(mRACA1)(高灌注率为13.96%)、mRACA1和胎儿型大脑后动脉右前段(12.81%)以及前交通动脉缺失和左后交通动脉缺失(112.41%)。该研究表明,CoW 结构对搭桥后的高灌注有显著影响。本研究提出的通用 0-1D 模型与 DLM-PD 和 CAM 相结合,可准确模拟分流前后不同 CoW 结构的血流动力学环境,有助于医生在术前识别高危高灌注患者,促进脑血管疾病无创诊断和治疗的发展。
{"title":"Quantitative evaluation of the effect of circle of willis structures on cerebral hyperperfusion: A multi-scale model analysis","authors":"Suqin Huang ,&nbsp;Bao Li ,&nbsp;Jincheng Liu ,&nbsp;Liyuan Zhang ,&nbsp;Hao Sun ,&nbsp;Huanmei Guo ,&nbsp;Yanping Zhang ,&nbsp;Fuyou Liang ,&nbsp;Yanjun Gong ,&nbsp;Youjun Liu","doi":"10.1016/j.bbe.2024.08.005","DOIUrl":"10.1016/j.bbe.2024.08.005","url":null,"abstract":"<div><p>Cerebral hyperperfusion occurs in some patients after superficial temporal artery–middle cerebral artery bypass surgery. However, there is uncertainty about cerebral hyperperfusion after bypass for patients with different Circle of Willis (CoW) structures.</p><p>This study established a lumped parameter model coupled with one–dimensional model (0–1D), whilst a deep learning model for predicting pressure drop (DLM–PD) caused by stenosis and a cerebral autoregulation model (CAM) were introduced into the model. Based on this model, 9 CoW structural models before and after bypass was constructed, to investigate the effects of different CoW structures on cerebral hyperperfusion after bypass. The model and the results were further verified by clinical data.</p><p>The MSE of mean flow rates from 0–1D model calculation and from clinically measurement was 1.4%. The patients exhibited hyperperfusion in three CoW structures after bypass: missing right anterior segment of anterior cerebral artery (mRACA1) (13.96% hyperperfusion), mRACA1 and foetal-type right anterior segment of posterior cerebral artery (12.81%), and missing anterior communicating artery and missing left posterior communicating artery (112.41%). The error between the average flow ratio from the model calculations and fromclinical measurement was less than 5%.</p><p>This study demonstrated that the CoW structure had a significant impact on hyperperfusion after bypass. The general 0–1D model coupled with DLM–PD and CAM proposed in this study, could accurately simulate the hemodynamic environment of different CoW structures before and after bypass, which might help physicians identify high–risk patients with hyperperfusion before surgery, and promote the development of non-invasive diagnosis and treatment of cerebrovascular diseases.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 782-793"},"PeriodicalIF":5.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference-enabled tracking of acute mental stress via multi-modal wearable physiological sensing: A proof-of-concept study 通过多模态可穿戴生理传感技术对急性精神压力进行推理追踪:概念验证研究
IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-19 DOI: 10.1016/j.bbe.2024.09.004
Yuanyuan Zhou , Azin S. Mousavi , Yekanth R. Chalumuri , Jesse D. Parreira , Mihir Modak , Jesus Antonio Sanchez-Perez , Asim H. Gazi , Omer T. Inan , Jin-Oh Hahn

Objective

To develop a novel algorithm for tracking acute mental stress which can infer acute mental stress state from multi-modal digital signatures of physiological parameters compatible with wearable-enabled sensing.

Methods

We derived prominent digital signatures of physiological responses to mental stress using cross-integration of multi-modal physiological signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), ballistocardiogram (BCG), electrodermal activity (EDA), and respiratory effort. Then, we developed an algorithm for tracking acute mental stress that can continuously classify stress vs no stress states by computing an aggregated likelihood computed with respect to a priori probability density distributions associated with the digital signatures of mental stress under stress and no stress states.

Results

Our algorithm could adequately infer mental stress state (average classification accuracy: 0.85, sensitivity: 0.85, specificity: 0.86) using a small number of prominent digital signatures derived from cross-integration of multi-modal physiological signals. The digital signatures in our work significantly outperformed the digital signatures employed in the state-of-the-art in tracking acute mental stress. Its exploitation of collective inference allowed for improved inference of mental stress state relative to naïve data mining techniques.

Conclusion

Our algorithm for tracking acute mental stress has the potential to make a leap in continuous, high-accuracy, and high-confidence inference of mental stress via convenient wearable-enabled physiological sensing. Significance: The ability to continuously monitor and track mental stress can collectively improve human wellbeing.

方法我们通过交叉整合多模态生理信号,包括心电图(ECG)、光电心动图(PPG)、地震心动图(SCG)、球心动图(BCG)、皮电活动(EDA)和呼吸努力,得出了心理压力生理反应的突出数字签名。然后,我们开发了一种用于追踪急性精神压力的算法,该算法可以通过计算与压力和无压力状态下精神压力数字签名相关的先验概率密度分布有关的聚合似然值,对压力和无压力状态进行连续分类。结果我们的算法可以利用从多模态生理信号交叉整合中获得的少量突出数字签名充分推断精神压力状态(平均分类准确率:0.85,灵敏度:0.85,特异性:0.86)。在追踪急性精神压力方面,我们工作中的数字签名明显优于最先进的数字签名。结论:我们的急性精神压力跟踪算法有望通过便捷的可穿戴生理传感技术,在连续、高精度和高置信度的精神压力推断方面实现飞跃。意义重大:持续监测和跟踪精神压力的能力可以共同改善人类的福祉。
{"title":"Inference-enabled tracking of acute mental stress via multi-modal wearable physiological sensing: A proof-of-concept study","authors":"Yuanyuan Zhou ,&nbsp;Azin S. Mousavi ,&nbsp;Yekanth R. Chalumuri ,&nbsp;Jesse D. Parreira ,&nbsp;Mihir Modak ,&nbsp;Jesus Antonio Sanchez-Perez ,&nbsp;Asim H. Gazi ,&nbsp;Omer T. Inan ,&nbsp;Jin-Oh Hahn","doi":"10.1016/j.bbe.2024.09.004","DOIUrl":"10.1016/j.bbe.2024.09.004","url":null,"abstract":"<div><h3>Objective</h3><p>To develop a novel algorithm for tracking acute mental stress which can infer acute mental stress state from multi-modal digital signatures of physiological parameters compatible with wearable-enabled sensing.</p></div><div><h3>Methods</h3><p>We derived prominent digital signatures of physiological responses to mental stress using cross-integration of multi-modal physiological signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), ballistocardiogram (BCG), electrodermal activity (EDA), and respiratory effort. Then, we developed an algorithm for tracking acute mental stress that can continuously classify stress vs no stress states by computing an aggregated likelihood computed with respect to a priori probability density distributions associated with the digital signatures of mental stress under stress and no stress states.</p></div><div><h3>Results</h3><p>Our algorithm could adequately infer mental stress state (average classification accuracy: 0.85, sensitivity: 0.85, specificity: 0.86) using a small number of prominent digital signatures derived from cross-integration of multi-modal physiological signals. The digital signatures in our work significantly outperformed the digital signatures employed in the state-of-the-art in tracking acute mental stress. Its exploitation of collective inference allowed for improved inference of mental stress state relative to naïve data mining techniques.</p></div><div><h3>Conclusion</h3><p>Our algorithm for tracking acute mental stress has the potential to make a leap in continuous, high-accuracy, and high-confidence inference of mental stress via convenient wearable-enabled physiological sensing. <u>Significance</u>: The ability to continuously monitor and track mental stress can collectively improve human wellbeing.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 771-781"},"PeriodicalIF":5.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in-vitro cell culture system for accurately reproducing the coupled hemodynamic signals at the artery endothelium 准确再现动脉内皮耦合血液动力学信号的体外细胞培养系统
IF 6.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-22 DOI: 10.1016/j.bbe.2024.08.001
Lixue Liang, Xueying Wang, Dong Chen, Yanxia Wang, Xiaoyue Luo, Bo Liu, Yu Wang, Kai-rong Qin
Microfluidics has been an effective technology to reconstruct the in-vivo physiological hemodynamic microenvironment, which is significantly important for preventing and curing circulatory system-related diseases. However, these existing microfluidic systems have failed to accurately reproduce the arterial blood pressure, shear stress, circumferential strain, as well as their coupling relationship, and have not taken into account whether the cells at various locations in the culture chamber are subjected to consistent mechanical stimulation. To solve the above shortcomings, this study developed an in-vitro endothelial cell culture system (ECCS) containing a microfluidic chip and afterload components based on the hemodynamic principles to reappear the desired hemodynamic signals and their coupling relationship accurately, while a relatively uniform area of stress and strain distribution was selected in the microfluidic chip for a more reliable cell mechanobiology study. The sensitivity of global hemodynamic behaviors of the ECCS was analyzed, and numerical simulation and in-vitro experiments were implemented to verify the performance of the proposed ECCS. Finally, the cellular hemodynamic response was tested using human umbilical vein endothelial cells, demonstrating that the proposed in-vitro ECCS has better biological effectiveness. In general, the proposed ECCS in this study provided a more accurate and reliable tool for reproducing the in-vivo hemodynamic microenvironment and showed good potential in the mechanobiology study.
微流控技术是重建体内生理血流动力学微环境的有效技术,对预防和治疗循环系统相关疾病具有重要意义。然而,现有的这些微流控系统无法准确再现动脉血压、剪切应力、圆周应变及其耦合关系,也没有考虑到培养腔内不同位置的细胞是否受到一致的机械刺激。为了解决上述不足,本研究根据血流动力学原理开发了一种包含微流控芯片和后负荷组件的体外内皮细胞培养系统(ECCS),以准确再现所需的血流动力学信号及其耦合关系,同时在微流控芯片中选择了一个应力和应变分布相对均匀的区域,以进行更可靠的细胞机械生物学研究。分析了 ECCS 全局血液动力学行为的敏感性,并通过数值模拟和体外实验验证了所提出的 ECCS 的性能。最后,利用人体脐静脉内皮细胞对细胞血液动力学响应进行了测试,结果表明所提出的体外 ECCS 具有更好的生物有效性。总之,本研究中提出的 ECCS 为再现体内血液动力学微环境提供了更准确、更可靠的工具,在机械生物学研究中显示出良好的潜力。
{"title":"An in-vitro cell culture system for accurately reproducing the coupled hemodynamic signals at the artery endothelium","authors":"Lixue Liang, Xueying Wang, Dong Chen, Yanxia Wang, Xiaoyue Luo, Bo Liu, Yu Wang, Kai-rong Qin","doi":"10.1016/j.bbe.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.bbe.2024.08.001","url":null,"abstract":"Microfluidics has been an effective technology to reconstruct the in-vivo physiological hemodynamic microenvironment, which is significantly important for preventing and curing circulatory system-related diseases. However, these existing microfluidic systems have failed to accurately reproduce the arterial blood pressure, shear stress, circumferential strain, as well as their coupling relationship, and have not taken into account whether the cells at various locations in the culture chamber are subjected to consistent mechanical stimulation. To solve the above shortcomings, this study developed an in-vitro endothelial cell culture system (ECCS) containing a microfluidic chip and afterload components based on the hemodynamic principles to reappear the desired hemodynamic signals and their coupling relationship accurately, while a relatively uniform area of stress and strain distribution was selected in the microfluidic chip for a more reliable cell mechanobiology study. The sensitivity of global hemodynamic behaviors of the ECCS was analyzed, and numerical simulation and in-vitro experiments were implemented to verify the performance of the proposed ECCS. Finally, the cellular hemodynamic response was tested using human umbilical vein endothelial cells, demonstrating that the proposed in-vitro ECCS has better biological effectiveness. In general, the proposed ECCS in this study provided a more accurate and reliable tool for reproducing the in-vivo hemodynamic microenvironment and showed good potential in the mechanobiology study.","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"7 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biocybernetics and Biomedical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1