Astrocyte-targeted Overproduction of IL-10 Reduces Neurodegeneration after TBI.

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Neurobiology Pub Date : 2022-06-30 DOI:10.5607/en21035
Mahsa Shanaki-Barvasad, Beatriz Almolda, Berta González, Bernardo Castellano
{"title":"Astrocyte-targeted Overproduction of IL-10 Reduces Neurodegeneration after TBI.","authors":"Mahsa Shanaki-Barvasad,&nbsp;Beatriz Almolda,&nbsp;Berta González,&nbsp;Bernardo Castellano","doi":"10.5607/en21035","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury is the greatest cause of disability and death in young adults in the developed world. The outcome for a TBI patient is determined by the severity of the injury, not only from the initial insult but, especially, as a product of the secondary injury. It is proposed that this secondary injury is directly linked to neuro-inflammation, with the production of pro-inflammatory mediators, activation of resident glial cells and infiltration of peripheral immune cells. In this context, anti-inflammatory treatments are one of the most promising therapies to dampen the inflammatory response associated with TBI and to reduce secondary injury. In this sense, the main objective of the present study is to elucidate the effect of local production of IL-10 in the neurological outcome after TBI. For this purpose, a cryogenic lesion was caused in transgenic animals overproducing IL-10 under the GFAP promoter on astrocytes (GFAP-IL10Tg mice) and the neuro-protection, microglial activation and leukocyte recruitment were evaluated. Our results showed a protective effect of IL-10 on neurons at early time-points after TBI, in correlation with a shift in the microglial activation profile towards a down-regulating phenotype and lower production of pro-inflammatory cytokines. Concomitantly, we observed a reduction in the BBB leakage together with modifications in leukocyte infiltration into the affected area. In conclusion, local IL-10 production modifies the neuro-inflammatory response after TBI, shifting it to anti-inflammatory and neuro-protective conditions. These results point to IL-10 as a promising candidate to improve neuro-inflammation associated with TBI.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"31 3","pages":"173-195"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/d5/en-31-3-173.PMC9272120.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en21035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 5

Abstract

Traumatic brain injury is the greatest cause of disability and death in young adults in the developed world. The outcome for a TBI patient is determined by the severity of the injury, not only from the initial insult but, especially, as a product of the secondary injury. It is proposed that this secondary injury is directly linked to neuro-inflammation, with the production of pro-inflammatory mediators, activation of resident glial cells and infiltration of peripheral immune cells. In this context, anti-inflammatory treatments are one of the most promising therapies to dampen the inflammatory response associated with TBI and to reduce secondary injury. In this sense, the main objective of the present study is to elucidate the effect of local production of IL-10 in the neurological outcome after TBI. For this purpose, a cryogenic lesion was caused in transgenic animals overproducing IL-10 under the GFAP promoter on astrocytes (GFAP-IL10Tg mice) and the neuro-protection, microglial activation and leukocyte recruitment were evaluated. Our results showed a protective effect of IL-10 on neurons at early time-points after TBI, in correlation with a shift in the microglial activation profile towards a down-regulating phenotype and lower production of pro-inflammatory cytokines. Concomitantly, we observed a reduction in the BBB leakage together with modifications in leukocyte infiltration into the affected area. In conclusion, local IL-10 production modifies the neuro-inflammatory response after TBI, shifting it to anti-inflammatory and neuro-protective conditions. These results point to IL-10 as a promising candidate to improve neuro-inflammation associated with TBI.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星形胶质细胞靶向IL-10的过量产生减少TBI后神经退行性变。
创伤性脑损伤是发达国家年轻人致残和死亡的最大原因。TBI患者的预后是由损伤的严重程度决定的,不仅是最初的损伤,尤其是继发性损伤的产物。这表明,这种继发性损伤与神经炎症直接相关,与促炎介质的产生、常驻胶质细胞的激活和外周免疫细胞的浸润有关。在这种情况下,抗炎治疗是最有希望抑制与TBI相关的炎症反应和减少继发性损伤的治疗方法之一。从这个意义上说,本研究的主要目的是阐明局部产生IL-10对TBI后神经预后的影响。为此,在GFAP启动子下过量分泌IL-10的转基因动物(GFAP- il10tg小鼠)的星形胶质细胞(GFAP- il10tg小鼠)上引起低温损伤,并评估其神经保护、小胶质细胞激活和白细胞募集。我们的研究结果显示,在TBI后的早期时间点,IL-10对神经元具有保护作用,这与小胶质细胞激活谱向下调表型的转变和促炎细胞因子的减少有关。同时,我们观察到血脑屏障泄漏的减少以及白细胞浸润到受影响区域的改变。总之,局部IL-10的产生改变了TBI后的神经炎症反应,使其转变为抗炎和神经保护状态。这些结果表明IL-10是改善与TBI相关的神经炎症的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
期刊最新文献
Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex. Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains. The Impact of Odor Category Similarity on Multimedia Experience. β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons. Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1