TonB-Dependent Transport Across the Bacterial Outer Membrane.

IF 8.5 1区 生物学 Q1 MICROBIOLOGY Annual review of microbiology Pub Date : 2023-09-15 Epub Date: 2023-03-21 DOI:10.1146/annurev-micro-032421-111116
Augustinas Silale, Bert van den Berg
{"title":"TonB-Dependent Transport Across the Bacterial Outer Membrane.","authors":"Augustinas Silale,&nbsp;Bert van den Berg","doi":"10.1146/annurev-micro-032421-111116","DOIUrl":null,"url":null,"abstract":"<p><p>TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":"77 ","pages":"67-88"},"PeriodicalIF":8.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-032421-111116","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TonB依赖性细菌外膜转运。
TonB依赖性转运蛋白(TBDT)存在于所有革兰氏阴性菌中,并介导对分子的能量依赖性摄取,这些分子太少或太大,无法被外膜(OM)扩散通道有效吸收。这一过程需要来自质子原动力的能量,并通过内膜中的TonB-ExbBD马达复合体输送到TBDT。再加上需要保护OM渗透屏障,这导致了一种极其复杂和迷人的传输机制,尽管进行了几十年的研究,但其基本原理仍不清楚。在这篇综述中,我们描述了我们目前对TBDT转运机制的理解,它们在新型抗生素递送中的潜在作用,以及TBDT相关(脂)蛋白的重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of microbiology
Annual review of microbiology 生物-微生物学
CiteScore
18.10
自引率
0.00%
发文量
37
期刊介绍: Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).
期刊最新文献
Understanding the Diversity, Evolution, Ecology, and Applications of Mycoviruses. Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Reconstructing Early Microbial Life. Novel Antibody-Based Protection/Therapeutics in Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1