Shayan Barootchi, William V. Giannobile, Lorenzo Tavelli
{"title":"PDGF-BB-enriched collagen matrix to treat multiple gingival recessions with the tunneled coronally advanced flap","authors":"Shayan Barootchi, William V. Giannobile, Lorenzo Tavelli","doi":"10.1002/cap.10211","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>With technological advancements in reconstructive periodontology, traditional protocols for the treatment of gingival recessions (GRs) can be challenged. This manuscript presents preliminary findings of a novel minimally-invasive approach for the regenerative treatment of multiple adjacent GR defects.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Two healthy adults were treated as part of this study. Multiple adjacent GRs in both subjects (1 in the mandible, and 1 in the maxilla) were treated employing a tunneled coronally advanced flap (TCAF) design, with the application of a cross-linked collagen matrix (CCM) that was enriched with recombinant human platelet-derived growth factor-BB (PDGF-BB) that was also applied on the prepared root surfaces. Clinical, ultrasonographic, esthetic, and patient-reported outcomes were observed at approximately 6- and 18-month time points.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>All sites healed uneventfully after the treatments. Complete root coverage was achieved and maintained throughout the follow-up observations, from 6 to 18 months. Patients reported minimal discomfort and reduction of dentinal hypersensitivity at the augmented sites. The areas augmented with CCM + PDGF-BB revealed an increased soft tissue thickness relative to baseline (pretreatment) measures, as well as reduction in the level of the facial bone dehiscences.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This article describes the success of two cases of a novel minimally invasive regenerative approach for the treatment of multiple adjacent GR defects by the TCAF, using a CCM loaded with PDGF-BB. This approach offers potential as a minimally-invasive method to repair multiple adjacent GRs.</p>\n </section>\n </div>","PeriodicalId":55950,"journal":{"name":"Clinical Advances in Periodontics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aap.onlinelibrary.wiley.com/doi/epdf/10.1002/cap.10211","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Advances in Periodontics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cap.10211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 2
Abstract
Background
With technological advancements in reconstructive periodontology, traditional protocols for the treatment of gingival recessions (GRs) can be challenged. This manuscript presents preliminary findings of a novel minimally-invasive approach for the regenerative treatment of multiple adjacent GR defects.
Methods
Two healthy adults were treated as part of this study. Multiple adjacent GRs in both subjects (1 in the mandible, and 1 in the maxilla) were treated employing a tunneled coronally advanced flap (TCAF) design, with the application of a cross-linked collagen matrix (CCM) that was enriched with recombinant human platelet-derived growth factor-BB (PDGF-BB) that was also applied on the prepared root surfaces. Clinical, ultrasonographic, esthetic, and patient-reported outcomes were observed at approximately 6- and 18-month time points.
Results
All sites healed uneventfully after the treatments. Complete root coverage was achieved and maintained throughout the follow-up observations, from 6 to 18 months. Patients reported minimal discomfort and reduction of dentinal hypersensitivity at the augmented sites. The areas augmented with CCM + PDGF-BB revealed an increased soft tissue thickness relative to baseline (pretreatment) measures, as well as reduction in the level of the facial bone dehiscences.
Conclusion
This article describes the success of two cases of a novel minimally invasive regenerative approach for the treatment of multiple adjacent GR defects by the TCAF, using a CCM loaded with PDGF-BB. This approach offers potential as a minimally-invasive method to repair multiple adjacent GRs.