Developmental programming of the pancreatic islet by in utero overnutrition.

Trends in developmental biology Pub Date : 2017-01-01
Joseph M Elsakr, Maureen Gannon
{"title":"Developmental programming of the pancreatic islet by <i>in utero</i> overnutrition.","authors":"Joseph M Elsakr, Maureen Gannon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Developmental Origins of Health and Disease (DOHaD) Hypothesis postulates that the <i>in utero</i> environment influences postnatal health and plays a role in disease etiology. Studies in both humans and animal models have shown that exposure to either under- or overnutrition <i>in utero</i> results in an increased risk of metabolic disease later in life. In addition, offspring born to overweight or obese mothers are more likely to be obese as children and into early adulthood and to have impaired glucose tolerance as adults. The Centers for Disease Control and Prevention estimates that over 70% of adults over the age of 20 are either overweight or obese and that nearly half of women are either overweight or obese at the time they become pregnant. Thus, the consequences of maternal overnutrition on the developing fetus are likely to be realized in greater numbers in the coming decades. This review will focus specifically on the effects of <i>in utero</i> overnutrition on pancreatic islet development and function and how the resulting morphological and functional changes influence the offspring's risk of developing metabolic disease. We will discuss the advantages and challenges of different animal models, the effects of exposure to overnutrition during distinct periods of development, the similarities and differences between and within model systems, and potential mechanisms and future directions in understanding how developmental alterations due to maternal diet exposure influence islet health and function later in life.</p>","PeriodicalId":75257,"journal":{"name":"Trends in developmental biology","volume":"10 ","pages":"79-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894880/pdf/nihms955902.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Developmental Origins of Health and Disease (DOHaD) Hypothesis postulates that the in utero environment influences postnatal health and plays a role in disease etiology. Studies in both humans and animal models have shown that exposure to either under- or overnutrition in utero results in an increased risk of metabolic disease later in life. In addition, offspring born to overweight or obese mothers are more likely to be obese as children and into early adulthood and to have impaired glucose tolerance as adults. The Centers for Disease Control and Prevention estimates that over 70% of adults over the age of 20 are either overweight or obese and that nearly half of women are either overweight or obese at the time they become pregnant. Thus, the consequences of maternal overnutrition on the developing fetus are likely to be realized in greater numbers in the coming decades. This review will focus specifically on the effects of in utero overnutrition on pancreatic islet development and function and how the resulting morphological and functional changes influence the offspring's risk of developing metabolic disease. We will discuss the advantages and challenges of different animal models, the effects of exposure to overnutrition during distinct periods of development, the similarities and differences between and within model systems, and potential mechanisms and future directions in understanding how developmental alterations due to maternal diet exposure influence islet health and function later in life.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
子宫内营养过剩对胰岛发育的影响
健康与疾病的发育起源(DOHaD)假说认为,子宫内环境会影响出生后的健康,并在疾病病因学中发挥作用。对人类和动物模型的研究表明,子宫内营养不足或营养过剩都会增加日后罹患代谢性疾病的风险。此外,超重或肥胖母亲所生的后代更有可能在儿童时期和成年早期肥胖,成年后葡萄糖耐量受损。据美国疾病控制和预防中心估计,20 岁以上的成年人中有 70% 以上超重或肥胖,近一半的妇女在怀孕时超重或肥胖。因此,母体营养过剩对发育中胎儿的影响在未来几十年可能会越来越大。本综述将特别关注子宫内营养过剩对胰岛发育和功能的影响,以及由此导致的形态和功能变化如何影响后代患代谢性疾病的风险。我们将讨论不同动物模型的优势和挑战、在不同发育时期暴露于营养过剩的影响、模型系统之间和内部的异同,以及了解母体饮食暴露导致的发育改变如何影响日后胰岛健康和功能的潜在机制和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic modulation of cell fate during pancreas development. Simplifying cell fate map by determining lineage history of core pathway activation during fate specification. Mouse zona pellucida proteins as receptors for binding of sperm to eggs. Developmental effects of in utero metformin exposure. Maternal determinants of gestation length in the rhesus monkey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1