Dongxing Yu, Hongxin Yang, Mairbek Chshiev, Albert Fert
{"title":"Skyrmions-based logic gates in one single nanotrack completely reconstructed via chirality barrier.","authors":"Dongxing Yu, Hongxin Yang, Mairbek Chshiev, Albert Fert","doi":"10.1093/nsr/nwac021","DOIUrl":null,"url":null,"abstract":"<p><p>Logic gates based on magnetic elements are promising candidates for logic-in-memory applications with non-volatile data retention, near-zero leakage and scalability. In such spin-based logic devices, however, the multi-strip structure and fewer functions are obstacles to improving integration and reducing energy consumption. Here we propose a skyrmions-based single-nanotrack logic family including AND, OR, NOT, NAND, NOR, XOR and XNOR that can be implemented and reconstructed by building and switching the Dzyaloshinskii-Moriya interaction (DMI) chirality barrier on a racetrack memory. Besides the pinning effect of the DMI chirality barrier on skyrmions, the annihilation, fusion and shunting of two skyrmions with opposite chirality are also achieved and demonstrated via local reversal of the DMI, which are necessary for the design of an engineer programmable logic nanotrack, transistor and complementary racetrack memory.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"9 12","pages":"nwac021"},"PeriodicalIF":16.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874028/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwac021","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
Logic gates based on magnetic elements are promising candidates for logic-in-memory applications with non-volatile data retention, near-zero leakage and scalability. In such spin-based logic devices, however, the multi-strip structure and fewer functions are obstacles to improving integration and reducing energy consumption. Here we propose a skyrmions-based single-nanotrack logic family including AND, OR, NOT, NAND, NOR, XOR and XNOR that can be implemented and reconstructed by building and switching the Dzyaloshinskii-Moriya interaction (DMI) chirality barrier on a racetrack memory. Besides the pinning effect of the DMI chirality barrier on skyrmions, the annihilation, fusion and shunting of two skyrmions with opposite chirality are also achieved and demonstrated via local reversal of the DMI, which are necessary for the design of an engineer programmable logic nanotrack, transistor and complementary racetrack memory.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.