Prediction of acute kidney injury after total aortic arch replacement with serum cystatin C and urine N-acetyl-β-d-glucosaminidase: A prospective observational study
Miaoxian Fang , Jiaxin Li , Heng Fang , Jinlin Wu , Zheng Wu , Linling He , Jia Deng , Chunbo Chen
{"title":"Prediction of acute kidney injury after total aortic arch replacement with serum cystatin C and urine N-acetyl-β-d-glucosaminidase: A prospective observational study","authors":"Miaoxian Fang , Jiaxin Li , Heng Fang , Jinlin Wu , Zheng Wu , Linling He , Jia Deng , Chunbo Chen","doi":"10.1016/j.cca.2022.12.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Acute kidney injury (AKI) after total aortic arch replacement (TAAR) is frequent and associated with adverse outcomes, whereas its early detection remains a challenge. Serum cystatin C (sCysC) and urinary <em>N</em>-acetyl-β-<span>d</span>-glucosaminidase (uNAG) are clinically available renal biomarkers, but their combination for AKI detection requires more evidence. This study aimed to assess the discriminative abilities of these biomarkers in AKI after TAAR.</p></div><div><h3>Materials and Methods</h3><p>Patients undergoing TAAR were included in this prospective observational study. The AKI prediction model was developed and internal verificated, and the significance of each variable was analyzed by random forest (RF). Finally, the best predictive critical values of sCysC and uNAG were explored by the AUC-ROC curve.</p></div><div><h3>Results</h3><p>The AUC-ROC of the prediction model was substantially enhanced by adding sCysC and uNAG (0.909 vs 0.844, p < 0.001), and the clinical utility and risk reclassification were significantly improved. Additionally, the RF showed that sCysC and uNAG ranked first and second. The AUC-ROC for each were 0.864 and 0.802 respectively, and the cut-off values were 1.395 mg/L and 31.90 U/g Cre respectively.</p></div><div><h3>Conclusion</h3><p>The prediction model incorporating functional marker sCysC and tubular injury marker uNAG can improve the discriminative abilities of AKI after TAAR.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"539 ","pages":"Pages 105-113"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898122014048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Acute kidney injury (AKI) after total aortic arch replacement (TAAR) is frequent and associated with adverse outcomes, whereas its early detection remains a challenge. Serum cystatin C (sCysC) and urinary N-acetyl-β-d-glucosaminidase (uNAG) are clinically available renal biomarkers, but their combination for AKI detection requires more evidence. This study aimed to assess the discriminative abilities of these biomarkers in AKI after TAAR.
Materials and Methods
Patients undergoing TAAR were included in this prospective observational study. The AKI prediction model was developed and internal verificated, and the significance of each variable was analyzed by random forest (RF). Finally, the best predictive critical values of sCysC and uNAG were explored by the AUC-ROC curve.
Results
The AUC-ROC of the prediction model was substantially enhanced by adding sCysC and uNAG (0.909 vs 0.844, p < 0.001), and the clinical utility and risk reclassification were significantly improved. Additionally, the RF showed that sCysC and uNAG ranked first and second. The AUC-ROC for each were 0.864 and 0.802 respectively, and the cut-off values were 1.395 mg/L and 31.90 U/g Cre respectively.
Conclusion
The prediction model incorporating functional marker sCysC and tubular injury marker uNAG can improve the discriminative abilities of AKI after TAAR.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.