Polysorbate 80 blocked a peripheral sodium channel, Nav1.7, and reduced neuronal excitability.

IF 2.8 3区 医学 Q2 NEUROSCIENCES Molecular Pain Pub Date : 2023-01-01 DOI:10.1177/17448069221150138
Ryeong-Eun Kim, Jin-Sung Choi
{"title":"Polysorbate 80 blocked a peripheral sodium channel, Na<sub>v</sub>1.7, and reduced neuronal excitability.","authors":"Ryeong-Eun Kim,&nbsp;Jin-Sung Choi","doi":"10.1177/17448069221150138","DOIUrl":null,"url":null,"abstract":"<p><p>Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Na<sub>v</sub>1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 μg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Na<sub>v</sub>1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Na<sub>v</sub>1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC<sub>50</sub>) of 250.4 μg/mL at a holding potential of -120 mV. However, the IC<sub>50</sub> was 1.1 μg/mL at a holding potential of -90 mV and was estimated to be 0.9 μg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Na<sub>v</sub>1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Na<sub>v</sub>1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Na<sub>v</sub>1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, <i>in vitro</i> experiments using polysorbate 80 with neurons should be conducted with caution.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/db/69/10.1177_17448069221150138.PMC9829885.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069221150138","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 μg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Nav1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Nav1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 250.4 μg/mL at a holding potential of -120 mV. However, the IC50 was 1.1 μg/mL at a holding potential of -90 mV and was estimated to be 0.9 μg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Nav1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Nav1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚山梨酯80阻断了外周钠通道Nav1.7,降低了神经元的兴奋性。
聚山梨酯80是一种非离子洗涤剂,由聚氧基化山梨糖和油酸衍生而来。作为乳化剂广泛应用于医药、食品、化妆品等行业。Nav1.7是一种在交感和感觉神经元中高度表达的外周钠通道,它在决定动作电位(ap)的阈值中起关键作用。结果表明,10 μg/mL聚山梨酸80可使大鼠背根神经节的APs消失或APs阈值升高。因此,我们使用全细胞膜片钳记录技术研究了聚山梨酯80是否抑制Nav1.7钠电流。聚山梨酯80以浓度依赖性的方式降低了Nav1.7电流,在-120 mV保持电位下,半数最大抑制浓度(IC50)为250.4 μg/mL。然而,在保持电位为-90 mV时,IC50为1.1 μg/mL,而在大多数通道失活的神经元静息电位下,IC50估计为0.9 μg/mL。聚山梨酯80对Nav1.7的活化速率和活化的电压依赖性没有影响。然而,聚山梨酯80在稳态快速失活曲线的电压依赖性中引起超极化移位。聚山酸酯80对Nav1.7电流的阻断在保持电位为-90 mV时是不可逆的,但在保持电位为-120 mV时是完全可逆的,此时通道大部分处于闭合状态。聚山梨酯80也减缓了从失活中恢复的速度,并诱导了强大的使用依赖性抑制,表明它可能结合并稳定失活状态。我们的研究结果表明,即使在低于商业浓度的情况下,聚山梨酯80也会以浓度、状态和使用依赖的方式抑制Nav1.7电流。这表明,聚山梨酯80可能有助于止痛药作为辅料。此外,使用聚山梨酯80与神经元的体外实验应谨慎进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
期刊最新文献
Neural Adaptation of the Reward System in Primary Dysmenorrhea. Rapid cleavage of IL-1β in DRG neurons produces tissue injury-induced pain hypersensitivity. Analyzing Substance Levels and Pain Perception in Painless Labor: The Impact of Spinal Epidural Analgesia. Assessment of orofacial nociceptive behaviors of mice with the sheltering tube method: Oxaliplatin-induced mechanical and cold allodynia in orofacial regions. Upregulation of KDM6B in the anterior cingulate cortex contributes to neonatal maternal deprivation-induced chronic visceral pain in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1