首页 > 最新文献

Molecular Pain最新文献

英文 中文
EXPRESS: Identification of genetic variations in μ opioid receptor in cats.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-03-04 DOI: 10.1177/17448069251327805
Kazumasu Sasaki, Junko Hasegawa, Kazutaka Ikeda, Tatsuya Ishikawa, Shinya Kasai

μ-opioid receptor (MOP) plays a critical role in mediating opioid analgesic effects. Genetic variations, particularly those in the MOP gene (Oprm1), significantly influence individual variations in opioid efficacy and side effects across species, highlighting the need for pharmacogenomic research in human and veterinary contexts. This study aimed to identify single-nucleotide variations (SNVs) within Oprm1 in 100 cats of various breeds. Oprm1 spans over 170 kb and consists of five exons that combine to yield three splice variants in the cat Ensembl database. Among these variants, Oprm1-202 is an ortholog of the MOR-1 transcript, which is the most abundant in humans and mice. Oprm1-202 shares 92% and 87% coding sequences (CDS) and 96% and 94% amino acid sequence identity with human and mouse MOR-1, respectively. Phylogenetic trees were constructed from the CDS and amino acid sequences of nine species, including humans, cats, and mice. Both the CDS and amino acid sequences of MOP in cats showed phylogenetic development closer to that of primates than of rodents. Four SNVs were identified in the CDS of Oprm1. One SNV was located in exon 1 and the other three in exon 2 of Oprm1, all of which were synonymous substitutions. Although synonymous mutations generally have a limited functional impact, they may influence splicing and receptor expression. Further research is required to assess the effects of these SNVs on opioid efficacy, receptor expression, and analgesic responses across breeds, considering the potential breed-specific genetic factors in cat species.

{"title":"EXPRESS: Identification of genetic variations in μ opioid receptor in cats.","authors":"Kazumasu Sasaki, Junko Hasegawa, Kazutaka Ikeda, Tatsuya Ishikawa, Shinya Kasai","doi":"10.1177/17448069251327805","DOIUrl":"https://doi.org/10.1177/17448069251327805","url":null,"abstract":"<p><p>μ-opioid receptor (MOP) plays a critical role in mediating opioid analgesic effects. Genetic variations, particularly those in the MOP gene (<i>Oprm1</i>), significantly influence individual variations in opioid efficacy and side effects across species, highlighting the need for pharmacogenomic research in human and veterinary contexts. This study aimed to identify single-nucleotide variations (SNVs) within <i>Oprm1</i> in 100 cats of various breeds. <i>Oprm1</i> spans over 170 kb and consists of five exons that combine to yield three splice variants in the cat Ensembl database. Among these variants, <i>Oprm1</i>-202 is an ortholog of the <i>MOR-1</i> transcript, which is the most abundant in humans and mice. <i>Oprm1</i>-202 shares 92% and 87% coding sequences (CDS) and 96% and 94% amino acid sequence identity with human and mouse <i>MOR-1</i>, respectively. Phylogenetic trees were constructed from the CDS and amino acid sequences of nine species, including humans, cats, and mice. Both the CDS and amino acid sequences of MOP in cats showed phylogenetic development closer to that of primates than of rodents. Four SNVs were identified in the CDS of <i>Oprm1</i>. One SNV was located in exon 1 and the other three in exon 2 of <i>Oprm1</i>, all of which were synonymous substitutions. Although synonymous mutations generally have a limited functional impact, they may influence splicing and receptor expression. Further research is required to assess the effects of these SNVs on opioid efficacy, receptor expression, and analgesic responses across breeds, considering the potential breed-specific genetic factors in cat species.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251327805"},"PeriodicalIF":2.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPRESS: Upregulation of LRRC8A in the anterior cingulate cortex mediates chronic visceral pain in adult male mice with neonatal maternal deprivation.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-02-17 DOI: 10.1177/17448069251324645
Jin-Nan Lu, Jing-Heng Dou, Zi-Long Yi, Lian Lian, Xing-Lei Ben, Fu-Chao Zhang, Guang-Yin Xu

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder primarily characterized by chronic visceral pain. Studies have reported that the anterior cingulate cortex (ACC) is involved in chronic visceral pain, however, the molecular mechanisms underlying this involvement remain largely unclear. In this study, we aimed to investigate the molecular mechanisms of the ACC in chronic visceral pain induced by neonatal maternal deprivation (NMD) in male mice. We showed that the expression of leucine-rich repeat-containing protein family member 8A (LRRC8A) at both mRNA and protein levels was significantly upregulated in the ACC of NMD male mice, with LRRC8A primarily co-localized in neurons. DCPIB, an inhibitor of LRRC8A, greatly alleviated chronic visceral pain. Moreover, the ATP concentration was significantly upregulated in the ACC of NMD male mice. However, LRRC8A was not involved in somatic pain induced by complete Freund's adjuvant (CFA) injection into the hind paw. In conclusion, our findings demonstrate that LRRC8A plays a critical role in regulating chronic visceral pain in NMD mice. These findings are expected to provide new ideas for the treatment of chronic visceral pain in IBS patients.

{"title":"EXPRESS: Upregulation of LRRC8A in the anterior cingulate cortex mediates chronic visceral pain in adult male mice with neonatal maternal deprivation.","authors":"Jin-Nan Lu, Jing-Heng Dou, Zi-Long Yi, Lian Lian, Xing-Lei Ben, Fu-Chao Zhang, Guang-Yin Xu","doi":"10.1177/17448069251324645","DOIUrl":"https://doi.org/10.1177/17448069251324645","url":null,"abstract":"<p><p>Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder primarily characterized by chronic visceral pain. Studies have reported that the anterior cingulate cortex (ACC) is involved in chronic visceral pain, however, the molecular mechanisms underlying this involvement remain largely unclear. In this study, we aimed to investigate the molecular mechanisms of the ACC in chronic visceral pain induced by neonatal maternal deprivation (NMD) in male mice. We showed that the expression of leucine-rich repeat-containing protein family member 8A (LRRC8A) at both mRNA and protein levels was significantly upregulated in the ACC of NMD male mice, with LRRC8A primarily co-localized in neurons. DCPIB, an inhibitor of LRRC8A, greatly alleviated chronic visceral pain. Moreover, the ATP concentration was significantly upregulated in the ACC of NMD male mice. However, LRRC8A was not involved in somatic pain induced by complete Freund's adjuvant (CFA) injection into the hind paw. In conclusion, our findings demonstrate that LRRC8A plays a critical role in regulating chronic visceral pain in NMD mice. These findings are expected to provide new ideas for the treatment of chronic visceral pain in IBS patients.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251324645"},"PeriodicalIF":2.8,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPRESS: Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part 2. Biophysics and gene expression.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-02-13 DOI: 10.1177/17448069251323666
Silvia Gutierrez, Renee Parker, Morgan Zhang, Maria Daniela Santi, Yi Ye, M Danilo Boada

Preclinical studies addressing the peripheral effects of cancer perineural invasion report severe neuronal availability and excitability changes. Oral cell squamous cell carcinoma perineural invasion (MOC2-PNI) shows similar effects, modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity (see Part 1.). The current study addresses the electrical status (normal or abnormal) of both active (low threshold mechano receptors (LT) and high threshold mechano receptors (HT)) and inactive (F-type and S-type) afferents. Concurrently, we have also evaluated changes in the genetic landscape that may help to understand the physiological dynamics behind MOC2-PNI-induced functional disruption of the peripheral sensory system. We have observed that the altered cell distribution and mechanical sensibility of the animal's somatosensory system cannot be explained by cellular electrical dysfunction or MOC2-PNI-induced apoptosis. Although PNI does modify the expression of several genes related to cellular hypersensitivity, these changes are insufficient to explain the MOC2-PNI-induced aberrant neuronal excitability state. Our results indicate that genetic markers provide limited information about the functional hyperexcitable state of the peripheral system. Importantly, our results also highlight the emerging role of plasma membrane Ca2+-ATPase activity (PMCA) in explaining several aspects of the observed gender-specific neuronal plasticity and the reported cellular distribution switch generated by MOC2-PNI.

{"title":"EXPRESS: Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part 2. Biophysics and gene expression.","authors":"Silvia Gutierrez, Renee Parker, Morgan Zhang, Maria Daniela Santi, Yi Ye, M Danilo Boada","doi":"10.1177/17448069251323666","DOIUrl":"https://doi.org/10.1177/17448069251323666","url":null,"abstract":"<p><p>Preclinical studies addressing the peripheral effects of cancer perineural invasion report severe neuronal availability and excitability changes. Oral cell squamous cell carcinoma perineural invasion (MOC2-PNI) shows similar effects, modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity (see Part 1.). The current study addresses the electrical status (normal or abnormal) of both active (low threshold mechano receptors (LT) and high threshold mechano receptors (HT)) and inactive (F-type and S-type) afferents. Concurrently, we have also evaluated changes in the genetic landscape that may help to understand the physiological dynamics behind MOC2-PNI-induced functional disruption of the peripheral sensory system. We have observed that the altered cell distribution and mechanical sensibility of the animal's somatosensory system cannot be explained by cellular electrical dysfunction or MOC2-PNI-induced apoptosis. Although PNI does modify the expression of several genes related to cellular hypersensitivity, these changes are insufficient to explain the MOC2-PNI-induced aberrant neuronal excitability state. Our results indicate that genetic markers provide limited information about the functional hyperexcitable state of the peripheral system. Importantly, our results also highlight the emerging role of plasma membrane Ca2+-ATPase activity (PMCA) in explaining several aspects of the observed gender-specific neuronal plasticity and the reported cellular distribution switch generated by MOC2-PNI.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251323666"},"PeriodicalIF":2.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXPRESS: Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part. 1: Behavior and single-cell in vivo electrophysiology.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-02-08 DOI: 10.1177/17448069251314738
Silvia Gutierrez, Renee Parker, Morgan Zhang, Maria Daniela Santi, Yi Ye, M Danilo Boada

Patients with cancer perineural invasion (PNI) report greater spontaneous pain and mechanical allodynia. Here, we examine the impact of the disease on the peripheral sensory system, the excitability changes induced by PNI at the dorsal root ganglia, and the potential protective role of the absence of Tumor Necrosis Factor-α Receptor 1 (TNFR1). To study these effects, we use a murine model generated by injecting mouse oral cancer squamous cell carcinoma (MOC2) into the sciatic nerve (MOC2-PNI) in both male and female mice. We found that MOC2-PNI induces a profound change in the somatosensory landscape by deactivating/blocking the peripheral inputs while modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity. All these changes caused by MOC2-PNI are unmitigated by the absence of TNFR1. We conclude that MOC2-PNI induces an aberrant neuronal excitability state and triggers extreme gender-specific neuronal plasticity. These data allow us to speculate on the role of such plasticity as a powerful defense mechanism to prevent terminal sensory dysfunction, the rise of chronic pain, and extend animals' survivability.

{"title":"EXPRESS: Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part. 1: Behavior and single-cell in vivo electrophysiology.","authors":"Silvia Gutierrez, Renee Parker, Morgan Zhang, Maria Daniela Santi, Yi Ye, M Danilo Boada","doi":"10.1177/17448069251314738","DOIUrl":"https://doi.org/10.1177/17448069251314738","url":null,"abstract":"<p><p>Patients with cancer perineural invasion (PNI) report greater spontaneous pain and mechanical allodynia. Here, we examine the impact of the disease on the peripheral sensory system, the excitability changes induced by PNI at the dorsal root ganglia, and the potential protective role of the absence of Tumor Necrosis Factor-α Receptor 1 (TNFR1). To study these effects, we use a murine model generated by injecting mouse oral cancer squamous cell carcinoma (MOC2) into the sciatic nerve (MOC2-PNI) in both male and female mice. We found that MOC2-PNI induces a profound change in the somatosensory landscape by deactivating/blocking the peripheral inputs while modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity. All these changes caused by MOC2-PNI are unmitigated by the absence of TNFR1. We conclude that MOC2-PNI induces an aberrant neuronal excitability state and triggers extreme gender-specific neuronal plasticity. These data allow us to speculate on the role of such plasticity as a powerful defense mechanism to prevent terminal sensory dysfunction, the rise of chronic pain, and extend animals' survivability.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251314738"},"PeriodicalIF":2.8,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota-derived short-chain fatty acid suppresses the excitability of rat nociceptive secondary neurons via G-protein-coupled receptor 41 signaling.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251320233
Yukito Sashide, Mamoru Takeda

Short-chain free fatty acids (SCFAs) are generated by gut microbiota through anaerobic fermentation of dietary fibers. Although gut microbiota-derived SCFAs modulate voltage-gated Ca2+ channels via G-protein-coupled receptor 41 (GPR41) in isolated sympathetic ganglion neurons, the influence of SCFAs, specifically propionic acid (PA), on the excitability of nociceptive neurons under in vivo conditions has yet to be ascertained. In the current study we assessed whether systemic PA administration diminishes the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) wide-dynamic range neurons responding to mechanical stimulation. Extracellular single-unit recordings from SpVc wide-dynamic range neurons were performed in anesthetized rats after mechanical stimulation of the orofacial region. PA significantly and reversibly inhibited the mean firing frequency of SpVc neurons in response to both non-noxious and noxious mechanical stimuli in a dose-dependent manner. Simultaneous administration of a GPR41 inhibitor abolished the PA-induced inhibited firing rate of SpVc neurons, indicating that systemic PA decreased the excitability of nociceptive secondary trigeminal neurons by activating GPR41 signaling-mediated inhibition of voltage-gated Ca2+ channels in the central terminals of the SpVc. Modulation of trigeminal nociception by systemic SCFA administration indicates that gut microbiota-derived SCFAs could be effective analgesic agents for relieving trigeminal pain, creating a new therapeutic strategy for the management of trigeminal pain, including clinical pain.

{"title":"Gut microbiota-derived short-chain fatty acid suppresses the excitability of rat nociceptive secondary neurons via G-protein-coupled receptor 41 signaling.","authors":"Yukito Sashide, Mamoru Takeda","doi":"10.1177/17448069251320233","DOIUrl":"10.1177/17448069251320233","url":null,"abstract":"<p><p>Short-chain free fatty acids (SCFAs) are generated by gut microbiota through anaerobic fermentation of dietary fibers. Although gut microbiota-derived SCFAs modulate voltage-gated Ca<sup>2+</sup> channels via G-protein-coupled receptor 41 (GPR41) in isolated sympathetic ganglion neurons, the influence of SCFAs, specifically propionic acid (PA), on the excitability of nociceptive neurons under in vivo conditions has yet to be ascertained. In the current study we assessed whether systemic PA administration diminishes the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) wide-dynamic range neurons responding to mechanical stimulation. Extracellular single-unit recordings from SpVc wide-dynamic range neurons were performed in anesthetized rats after mechanical stimulation of the orofacial region. PA significantly and reversibly inhibited the mean firing frequency of SpVc neurons in response to both non-noxious and noxious mechanical stimuli in a dose-dependent manner. Simultaneous administration of a GPR41 inhibitor abolished the PA-induced inhibited firing rate of SpVc neurons, indicating that systemic PA decreased the excitability of nociceptive secondary trigeminal neurons by activating GPR41 signaling-mediated inhibition of voltage-gated Ca<sup>2+</sup> channels in the central terminals of the SpVc. Modulation of trigeminal nociception by systemic SCFA administration indicates that gut microbiota-derived SCFAs could be effective analgesic agents for relieving trigeminal pain, creating a new therapeutic strategy for the management of trigeminal pain, including clinical pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251320233"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AMPK activation mitigates inflammatory pain by modulating STAT3 phosphorylation in inflamed tissue macrophages of adult male mice.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251321339
Hongchun Xiang, Yuye Lan, Liang Hu, Renjie Qin, Hongping Li, Tao Weng, Yan Zou, Yongmin Liu, Xuefei Hu, Wenqiang Ge, Hong Zhang, Hui-Lin Pan, Na-Na Yang, Wentao Liu, Guowei Cai, Man Li

Inflammatory pain presents a significant clinical challenge. AMP-activated protein kinase (AMPK) is recognized for its capacity to alleviate inflammation by inhibiting transcription factors such as nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription (STAT). Our prior research demonstrated that AMPK reduces inflammatory pain by inhibiting NF-κB activation and interleukin-1 beta (IL-1β) expression. However, the role of AMPK in regulating reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) by modulating STAT3 phosphorylation in inflammatory pain remains inadequately understood. This study aims to investigate the role of AMPK in modulating STAT3 phosphorylation in the macrophages of inflamed tissues to mitigate inflammatory pain. A Complete Freund's Adjuvant (CFA)-induced inflammatory pain model was established by subcutaneous injection into the plantar surface of the left hindpaw of adult male mice. Behavioral tests of mechanical allodynia and thermal latency were used to determine nociceptive behavior. Immunoblotting quantified p-AMPK and iNOS expression levels. Nuclear translocation of p-STAT3(Ser727) and STAT3 in macrophages was assessed by western blot and immunofluorescence. ROS accumulation and mitochondrial damage in NR8383 macrophages were detected by flow cytometry. Lentivirus infection cells experiment was performed to transfect vectors encoding the STAT3 S727D mutants. Treatment with the AMPK activator AICAR alleviated CFA-induced inflammatory pain, enhanced AMPK phosphorylation, and reduced iNOS expression in inflamed skin tissues. AICAR effectively prevented STAT3 nuclear translocation while promoting the phosphorylation of STAT3 (Ser727) in the cytoplasm. In vitro studies with CFA-stimulated NR8383 macrophages revealed that AICAR increased STAT3(Ser727) phosphorylation, curtailed iNOS expression, and attenuated ROS accumulation and mitochondrial damage. Furthermore, the S727D mutation, which enhances STAT3 phosphorylation, replicated the protective effects of AICAR against CFA-induced oxidative stress and mitochondrial dysfunction. Our study shows that the AMPK acitvation downregulates iNOS expression by inhibiting the STAT3 nuclear translocation and promotes cytoplasmic STAT3(Ser727) phosphorylation, which reduces ROS expression and mitochondrial dysfunction, thereby alleviating inflammatory pain. These findings underscore the therapeutic potential of targeting AMPK and STAT3 pathways in inflammatory pain management.

{"title":"AMPK activation mitigates inflammatory pain by modulating STAT3 phosphorylation in inflamed tissue macrophages of adult male mice.","authors":"Hongchun Xiang, Yuye Lan, Liang Hu, Renjie Qin, Hongping Li, Tao Weng, Yan Zou, Yongmin Liu, Xuefei Hu, Wenqiang Ge, Hong Zhang, Hui-Lin Pan, Na-Na Yang, Wentao Liu, Guowei Cai, Man Li","doi":"10.1177/17448069251321339","DOIUrl":"10.1177/17448069251321339","url":null,"abstract":"<p><p>Inflammatory pain presents a significant clinical challenge. AMP-activated protein kinase (AMPK) is recognized for its capacity to alleviate inflammation by inhibiting transcription factors such as nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription (STAT). Our prior research demonstrated that AMPK reduces inflammatory pain by inhibiting NF-κB activation and interleukin-1 beta (IL-1β) expression. However, the role of AMPK in regulating reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) by modulating STAT3 phosphorylation in inflammatory pain remains inadequately understood. This study aims to investigate the role of AMPK in modulating STAT3 phosphorylation in the macrophages of inflamed tissues to mitigate inflammatory pain. A Complete Freund's Adjuvant (CFA)-induced inflammatory pain model was established by subcutaneous injection into the plantar surface of the left hindpaw of adult male mice. Behavioral tests of mechanical allodynia and thermal latency were used to determine nociceptive behavior. Immunoblotting quantified p-AMPK and iNOS expression levels. Nuclear translocation of p-STAT3(Ser727) and STAT3 in macrophages was assessed by western blot and immunofluorescence. ROS accumulation and mitochondrial damage in NR8383 macrophages were detected by flow cytometry. Lentivirus infection cells experiment was performed to transfect vectors encoding the STAT3 S727D mutants. Treatment with the AMPK activator AICAR alleviated CFA-induced inflammatory pain, enhanced AMPK phosphorylation, and reduced iNOS expression in inflamed skin tissues. AICAR effectively prevented STAT3 nuclear translocation while promoting the phosphorylation of STAT3 (Ser727) in the cytoplasm. In vitro studies with CFA-stimulated NR8383 macrophages revealed that AICAR increased STAT3(Ser727) phosphorylation, curtailed iNOS expression, and attenuated ROS accumulation and mitochondrial damage. Furthermore, the S727D mutation, which enhances STAT3 phosphorylation, replicated the protective effects of AICAR against CFA-induced oxidative stress and mitochondrial dysfunction. Our study shows that the AMPK acitvation downregulates iNOS expression by inhibiting the STAT3 nuclear translocation and promotes cytoplasmic STAT3(Ser727) phosphorylation, which reduces ROS expression and mitochondrial dysfunction, thereby alleviating inflammatory pain. These findings underscore the therapeutic potential of targeting AMPK and STAT3 pathways in inflammatory pain management.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251321339"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SGK1-HDAC4-HMGB1 signaling pathway in the spinal cord dorsal horn participates in diabetic neuropathic pain.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251321143
Mao-Biao Zhang, Jia-Li Chen, Jia-Hui Lu, Gai-Li Jia, Hong Cao, Jun Li

Purpose: This study aimed to determine whether serum-and glucocorticoid-inducible kinase1 (SGK1) activation-dependent histone deacetylase 4 (HDAC4) phosphorylation, nucleocytoplasmic trafficking, and subsequent regulation of high-mobility group protein box 1 (HMGB1) expression are involved in type 2 diabetic neuropathic pain (DNP).

Methods: The type 2 diabetic neuropathic pain model was established in rats by feeding them with a high-fat and high-sugar diet for 8 weeks and then fasting them for 12 h, followed by a single intraperitoneal injection of streptozotocin (STZ, 35 mg/kg). SGK1 was inhibited in the spinal cord by intrathecal administration of the SGK1 inhibitor GSK-650394.

Results: The present study revealed that pSGK1/tSGK1 was persistently upregulated in the spinal cord of rats with type-2 DNP. The downregulation of pSGK1/tSGK1 through the intrathecal injection of the SGK1 inhibitor GSK-650394 significantly ameliorated the pain hypersensitivity, relieved the abnormal expression of pHDAC4/tHDAC4 and HMGB1, and affected HDAC4 nucleocytoplasmic trafficking in DNP rats.

Conclusion: Our data suggest that SGK1 in the spinal cord modulates type-2 DNP by regulating the HDAC4/HMGB1 pathway.

{"title":"SGK1-HDAC4-HMGB1 signaling pathway in the spinal cord dorsal horn participates in diabetic neuropathic pain.","authors":"Mao-Biao Zhang, Jia-Li Chen, Jia-Hui Lu, Gai-Li Jia, Hong Cao, Jun Li","doi":"10.1177/17448069251321143","DOIUrl":"10.1177/17448069251321143","url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to determine whether serum-and glucocorticoid-inducible kinase1 (SGK1) activation-dependent histone deacetylase 4 (HDAC4) phosphorylation, nucleocytoplasmic trafficking, and subsequent regulation of high-mobility group protein box 1 (HMGB1) expression are involved in type 2 diabetic neuropathic pain (DNP).</p><p><strong>Methods: </strong>The type 2 diabetic neuropathic pain model was established in rats by feeding them with a high-fat and high-sugar diet for 8 weeks and then fasting them for 12 h, followed by a single intraperitoneal injection of streptozotocin (STZ, 35 mg/kg). SGK1 was inhibited in the spinal cord by intrathecal administration of the SGK1 inhibitor GSK-650394.</p><p><strong>Results: </strong>The present study revealed that pSGK1/tSGK1 was persistently upregulated in the spinal cord of rats with type-2 DNP. The downregulation of pSGK1/tSGK1 through the intrathecal injection of the SGK1 inhibitor GSK-650394 significantly ameliorated the pain hypersensitivity, relieved the abnormal expression of pHDAC4/tHDAC4 and HMGB1, and affected HDAC4 nucleocytoplasmic trafficking in DNP rats.</p><p><strong>Conclusion: </strong>Our data suggest that SGK1 in the spinal cord modulates type-2 DNP by regulating the HDAC4/HMGB1 pathway.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251321143"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depression and anxiety in Chinese patients hospitalized with primary headache: A cross-sectional multicenter study.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251314271
Zhihua Jia, Dongjun Wan, Ziming Yin, Zhiliang Fan, Peng Xu, Xueqian Yuan, Min Chen, Dan Wang, Hebo Wang, Shengshu Wang, Shuhua Zhang, Ruozhuo Liu, Xiaolin Wang, Rongfei Wang, Hui Su, Xun Han, Zhe Yu, Yingji Li, Shengyuan Yu, Zhao Dong

Background: Primary headache and psychiatric diseases are bidirectional correlated. The real-world data of depression and anxiety in Chinese patients hospitalized for primary headache, considering all subtypes, remain unclear.

Methods: This study enrolled patients attending eight Chinese headache centers from October 2022 to September 2023. A WeChat mini-program was designed to collect data. Headache was diagnosed and confirmed by two headache specialists. The Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7 were used to assess depression and anxiety.

Results: Overall, 1963 patients with primary headache were analyzed; the prevalence of depression and anxiety was 20.1% (396/1963) and 14.8% (290/1963), respectively. Of the 1963 patients, 217 (11.1%) had history of anxiety or depression and 184 (9.4%) had undergone assessments. Patients with both primary headache and depression were more likely to be women (77.8% vs 71.9%), experience more severe headache (numerical rating scale; 6.2 ± 1.9 vs 5.7 ± 1.9) and greater impacts on quality of life (Headache Impact Test-6; 65.3± 8.5 vs 58.1 ± 11.5). Those with both primary headache and anxiety exhibited similar results and were less educated. Depression and anxiety were more prevalent in chronic migraineurs (CM) than in episodic migraineurs (36.8% vs 16.9% and 28.9% vs 12.3%, respectively) and in those with chronic (CTTH) than in those with episodic tension-type headache (30.6% vs 15.1% and 20.1% vs 12.8%, respectively).

Conclusion: Depression and anxiety are inadequately diagnosed and strongly associated with sex, severe headache, chronification and disability in patients with primary headache in China. To improve the health of patients with primary headaches, early screening for depression and anxiety is important.

{"title":"Depression and anxiety in Chinese patients hospitalized with primary headache: A cross-sectional multicenter study.","authors":"Zhihua Jia, Dongjun Wan, Ziming Yin, Zhiliang Fan, Peng Xu, Xueqian Yuan, Min Chen, Dan Wang, Hebo Wang, Shengshu Wang, Shuhua Zhang, Ruozhuo Liu, Xiaolin Wang, Rongfei Wang, Hui Su, Xun Han, Zhe Yu, Yingji Li, Shengyuan Yu, Zhao Dong","doi":"10.1177/17448069251314271","DOIUrl":"10.1177/17448069251314271","url":null,"abstract":"<p><strong>Background: </strong>Primary headache and psychiatric diseases are bidirectional correlated. The real-world data of depression and anxiety in Chinese patients hospitalized for primary headache, considering all subtypes, remain unclear.</p><p><strong>Methods: </strong>This study enrolled patients attending eight Chinese headache centers from October 2022 to September 2023. A WeChat mini-program was designed to collect data. Headache was diagnosed and confirmed by two headache specialists. The Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7 were used to assess depression and anxiety.</p><p><strong>Results: </strong>Overall, 1963 patients with primary headache were analyzed; the prevalence of depression and anxiety was 20.1% (396/1963) and 14.8% (290/1963), respectively. Of the 1963 patients, 217 (11.1%) had history of anxiety or depression and 184 (9.4%) had undergone assessments. Patients with both primary headache and depression were more likely to be women (77.8% vs 71.9%), experience more severe headache (numerical rating scale; 6.2 ± 1.9 vs 5.7 ± 1.9) and greater impacts on quality of life (Headache Impact Test-6; 65.3± 8.5 vs 58.1 ± 11.5). Those with both primary headache and anxiety exhibited similar results and were less educated. Depression and anxiety were more prevalent in chronic migraineurs (CM) than in episodic migraineurs (36.8% vs 16.9% and 28.9% vs 12.3%, respectively) and in those with chronic (CTTH) than in those with episodic tension-type headache (30.6% vs 15.1% and 20.1% vs 12.8%, respectively).</p><p><strong>Conclusion: </strong>Depression and anxiety are inadequately diagnosed and strongly associated with sex, severe headache, chronification and disability in patients with primary headache in China. To improve the health of patients with primary headaches, early screening for depression and anxiety is important.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251314271"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin relieves CFA-induced inflammatory pain by inhibiting the AP-1/c-Jun-CCL2-CCR2 pathway in the spinal dorsal horn.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251323668
Yi Zhu, Yinhong Jiang, Xinyu Lu, Siyu Li, Fujiaying Liu, Yidan Xu, Yue Tian, Liangliang Gao, Lei Wei

Inflammatory pain is a pervasive clinical issue that severely diminishes individuals' quality of life. AP-1 (Activating protein-1) is a transcription factor composed of Jun and Fos proteins. Upregulation of AP-1/c-Jun activity is observed in a variety of diseases, particularly in inflammatory conditions. The CCL2 (C-C Motif Chemokine Ligand 2)/CCR2 (C-C Chemokine Receptor 2) axis plays a crucial role in regulating both peripheral and central inflammation. Curcumin, a natural compound derived from the roots of turmeric, possesses anti-inflammatory, antioxidant, and analgesic properties, making it effective for treating various disorders. However, the effects of curcumin on inflammatory pain and its potential mechanisms of action remain unclear. In this study, we utilized a CFA (Complete Freund's Adjuvant)-induced inflammatory pain model to investigate the effects of curcumin. We found that curcumin effectively reduced CFA-induced mechanical allodynia when administered via intrathecal injection. Behavioral assessments were performed using the Von Frey test. Western blot analysis was performed to detect variations in molecular expression, while immunofluorescence was employed to ascertain cellular localization. Intrathecal injection of the AP-1/c-Jun inhibitor T-5224, along with curcumin, resulted in a reduction in the levels of c-Jun, p-c-Jun, CCL2, and CCR2. Additionally, intrathecal injection of the CCR2 antagonist RS504393 also reduced the expression of CCL2 and CCR2. In summary, curcumin plays a significant role in analgesia within the CFA-induced inflammatory pain model. CCL2/CCR2 acts as a downstream mediator of AP-1/c-Jun. Curcumin can suppress the expression of AP-1/c-Jun, thereby inhibiting the expression of CCL2 and CCR2 in the spinal dorsal horn and contributing to the treatment of inflammatory pain.

{"title":"Curcumin relieves CFA-induced inflammatory pain by inhibiting the AP-1/c-Jun-CCL2-CCR2 pathway in the spinal dorsal horn.","authors":"Yi Zhu, Yinhong Jiang, Xinyu Lu, Siyu Li, Fujiaying Liu, Yidan Xu, Yue Tian, Liangliang Gao, Lei Wei","doi":"10.1177/17448069251323668","DOIUrl":"10.1177/17448069251323668","url":null,"abstract":"<p><p>Inflammatory pain is a pervasive clinical issue that severely diminishes individuals' quality of life. AP-1 (Activating protein-1) is a transcription factor composed of Jun and Fos proteins. Upregulation of AP-1/c-Jun activity is observed in a variety of diseases, particularly in inflammatory conditions. The CCL2 (C-C Motif Chemokine Ligand 2)/CCR2 (C-C Chemokine Receptor 2) axis plays a crucial role in regulating both peripheral and central inflammation. Curcumin, a natural compound derived from the roots of turmeric, possesses anti-inflammatory, antioxidant, and analgesic properties, making it effective for treating various disorders. However, the effects of curcumin on inflammatory pain and its potential mechanisms of action remain unclear. In this study, we utilized a CFA (Complete Freund's Adjuvant)-induced inflammatory pain model to investigate the effects of curcumin. We found that curcumin effectively reduced CFA-induced mechanical allodynia when administered via intrathecal injection. Behavioral assessments were performed using the Von Frey test. Western blot analysis was performed to detect variations in molecular expression, while immunofluorescence was employed to ascertain cellular localization. Intrathecal injection of the AP-1/c-Jun inhibitor T-5224, along with curcumin, resulted in a reduction in the levels of c-Jun, p-c-Jun, CCL2, and CCR2. Additionally, intrathecal injection of the CCR2 antagonist RS504393 also reduced the expression of CCL2 and CCR2. In summary, curcumin plays a significant role in analgesia within the CFA-induced inflammatory pain model. CCL2/CCR2 acts as a downstream mediator of AP-1/c-Jun. Curcumin can suppress the expression of AP-1/c-Jun, thereby inhibiting the expression of CCL2 and CCR2 in the spinal dorsal horn and contributing to the treatment of inflammatory pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251323668"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of the neuropeptide receptor calcitonin receptor-like in the spinal cord via MLL2 in a mouse model of paclitaxel-induced peripheral neuropathy.
IF 2.8 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-01 DOI: 10.1177/17448069251314857
Salvador Sierra, Sara M Herz, Doan On, Mikhail G Dozmorov, M Imad Damaj, Javier Gonzalez-Maeso

Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent and severe side effect affecting cancer patients undergoing paclitaxel treatment. Growing evidence underscores the pivotal role of calcitonin-related peptide (CGRP) in the development of CIPN. Repeated administration of paclitaxel induces alterations in CGRP release from sensory neurons within the dorsal root ganglia (DRG). The density of the CGRP receptor is most prominent in the dorsal horn of the spinal cord, where it overlaps with the distribution of CGRP. However, the impact of chemotherapy treatment on expression of the CGRP receptor in the spinal cord remains unclear, as well as the potential therapeutic benefits of a CGRP receptor antagonist in an animal model of CIPN. Using a mouse model of paclitaxel-induced mechanical hypersensitivity, we show upregulation of Calcitonin receptor-like receptor (Calcrl) mRNA expression in the spinal cord, an event that occurred in association with upregulation of the H3K4 methyltransferase MLL2. This effect of repeated paclitaxel administration was also linked to an increase in the recruitment of MLL2, thereby enhancing levels of the active mark H3K4me2 at the Calcrl promoter. Furthermore, administration of the CGRP receptor antagonist BIBN4096 mitigated mechanical and cold hypersensitivity in paclitaxel-treated mice. Together, these observations suggest the CGRP receptor in the spinal cord as a potential target for reducing paclitaxel-induced neuropathic pain in animal models.

{"title":"Upregulation of the neuropeptide receptor calcitonin receptor-like in the spinal cord via MLL2 in a mouse model of paclitaxel-induced peripheral neuropathy.","authors":"Salvador Sierra, Sara M Herz, Doan On, Mikhail G Dozmorov, M Imad Damaj, Javier Gonzalez-Maeso","doi":"10.1177/17448069251314857","DOIUrl":"10.1177/17448069251314857","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent and severe side effect affecting cancer patients undergoing paclitaxel treatment. Growing evidence underscores the pivotal role of calcitonin-related peptide (CGRP) in the development of CIPN. Repeated administration of paclitaxel induces alterations in CGRP release from sensory neurons within the dorsal root ganglia (DRG). The density of the CGRP receptor is most prominent in the dorsal horn of the spinal cord, where it overlaps with the distribution of CGRP. However, the impact of chemotherapy treatment on expression of the CGRP receptor in the spinal cord remains unclear, as well as the potential therapeutic benefits of a CGRP receptor antagonist in an animal model of CIPN. Using a mouse model of paclitaxel-induced mechanical hypersensitivity, we show upregulation of <i>Calcitonin receptor-like receptor</i> (<i>Calcrl</i>) mRNA expression in the spinal cord, an event that occurred in association with upregulation of the H3K4 methyltransferase <i>MLL2</i>. This effect of repeated paclitaxel administration was also linked to an increase in the recruitment of MLL2, thereby enhancing levels of the active mark H3K4me2 at the <i>Calcrl</i> promoter. Furthermore, administration of the CGRP receptor antagonist BIBN4096 mitigated mechanical and cold hypersensitivity in paclitaxel-treated mice. Together, these observations suggest the CGRP receptor in the spinal cord as a potential target for reducing paclitaxel-induced neuropathic pain in animal models.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"21 ","pages":"17448069251314857"},"PeriodicalIF":2.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Pain
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1