Molecular machines stimulate intercellular calcium waves and cause muscle contraction

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2023-07-10 DOI:10.1038/s41565-023-01436-w
Jacob L. Beckham, Alexis R. van Venrooy, Soonyoung Kim, Gang Li, Bowen Li, Guillaume Duret, Dallin Arnold, Xuan Zhao, John T. Li, Ana L. Santos, Gautam Chaudhry, Dongdong Liu, Jacob T. Robinson, James M. Tour
{"title":"Molecular machines stimulate intercellular calcium waves and cause muscle contraction","authors":"Jacob L. Beckham, Alexis R. van Venrooy, Soonyoung Kim, Gang Li, Bowen Li, Guillaume Duret, Dallin Arnold, Xuan Zhao, John T. Li, Ana L. Santos, Gautam Chaudhry, Dongdong Liu, Jacob T. Robinson, James M. Tour","doi":"10.1038/s41565-023-01436-w","DOIUrl":null,"url":null,"abstract":"Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 9","pages":"1051-1059"},"PeriodicalIF":38.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01436-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子机器刺激细胞间钙波并引起肌肉收缩。
细胞间钙波(ICW)是一种复杂的信号现象,控制着许多重要的生物活动,包括平滑肌收缩、囊泡分泌、基因表达和神经元兴奋性的变化。因此,ICW的远程刺激可以产生多种生物调节和治疗策略。在这里,我们证明了光激活分子机器(MM)——在分子尺度上进行机械工作的分子——可以远程刺激ICW。MM由一个多环转子和定子组成,当被可见光激活时,它们围绕中心烯烃旋转。活细胞钙跟踪和药理学实验表明,MM诱导的ICW是由单向、快速旋转的MM激活三磷酸肌醇介导的信号通路驱动的。我们的数据表明,MM诱发的ICW可以在体外控制心肌细胞的肌肉收缩,并在体内控制寻常水螅的动物行为。这项工作展示了一种使用分子规模设备直接控制细胞信号和下游生物功能的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Organic radio-afterglow nanoprobes for cancer theranostics A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene Full on-device manipulation of olefin metathesis for precise manufacturing Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1