{"title":"Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review.","authors":"Rebika Rai, Arunita Das, Krishna Gopal Dhal","doi":"10.1007/s12530-022-09425-5","DOIUrl":null,"url":null,"abstract":"<p><p>Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"13 6","pages":"889-945"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859498/pdf/","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-022-09425-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19
Abstract
Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.