首页 > 最新文献

Evolving Systems最新文献

英文 中文
Feature-based search space characterisation for data-driven adaptive operator selection 基于特征的搜索空间特征,用于数据驱动的自适应算子选择
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-12-22 DOI: 10.1007/s12530-023-09560-7
Mehmet Emin Aydin, R. Durgut, A. Rakib, Hisham Ihshaish
{"title":"Feature-based search space characterisation for data-driven adaptive operator selection","authors":"Mehmet Emin Aydin, R. Durgut, A. Rakib, Hisham Ihshaish","doi":"10.1007/s12530-023-09560-7","DOIUrl":"https://doi.org/10.1007/s12530-023-09560-7","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"22 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138947802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image enhancement based on optimized 2D histogram modification by krill herd algorithm 基于磷虾群算法优化二维直方图修改的图像增强技术
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-12-16 DOI: 10.1007/s12530-023-09545-6
Mahdis Golabian, A. Mahmoodzadeh, H. Agahi
{"title":"Image enhancement based on optimized 2D histogram modification by krill herd algorithm","authors":"Mahdis Golabian, A. Mahmoodzadeh, H. Agahi","doi":"10.1007/s12530-023-09545-6","DOIUrl":"https://doi.org/10.1007/s12530-023-09545-6","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"64 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Csa-gru: a hybrid CNN and self attention GRU for human identification using ear biometrics Csa-gru:利用耳部生物识别技术进行人体识别的混合 CNN 和自我关注 GRU
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-12-16 DOI: 10.1007/s12530-023-09555-4
Anshul Mahajan, Sunil K. Singla
{"title":"Csa-gru: a hybrid CNN and self attention GRU for human identification using ear biometrics","authors":"Anshul Mahajan, Sunil K. Singla","doi":"10.1007/s12530-023-09555-4","DOIUrl":"https://doi.org/10.1007/s12530-023-09555-4","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"29 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leader–follower tracking in lipschitz nonlinear multi agent systems under undirected graph with noisy sinusoidal motion of the leader 在有领导者正弦波噪声运动的无向图下,唇状非线性多代理系统中的领导者-追随者追踪
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-12-12 DOI: 10.1007/s12530-023-09551-8
Seyyed Vahid Ghasemzadeh, B. Safarinejadian
{"title":"Leader–follower tracking in lipschitz nonlinear multi agent systems under undirected graph with noisy sinusoidal motion of the leader","authors":"Seyyed Vahid Ghasemzadeh, B. Safarinejadian","doi":"10.1007/s12530-023-09551-8","DOIUrl":"https://doi.org/10.1007/s12530-023-09551-8","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"103 9","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139008110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneous transfer learning for supporting pervasive edge applications 支持普适边缘应用的同构迁移学习
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-08 DOI: 10.1007/s12530-023-09548-3
Thanasis Moustakas, Kostas Kolomvatsos
{"title":"Homogeneous transfer learning for supporting pervasive edge applications","authors":"Thanasis Moustakas, Kostas Kolomvatsos","doi":"10.1007/s12530-023-09548-3","DOIUrl":"https://doi.org/10.1007/s12530-023-09548-3","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"2 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascade hyperchaotic fuzzy system (CHCFS): discussions on accuracy and interpretability 级联超混沌模糊系统(CHCFS):准确性和可解释性的讨论
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-07 DOI: 10.1007/s12530-023-09546-5
Hamid Abbasi
{"title":"Cascade hyperchaotic fuzzy system (CHCFS): discussions on accuracy and interpretability","authors":"Hamid Abbasi","doi":"10.1007/s12530-023-09546-5","DOIUrl":"https://doi.org/10.1007/s12530-023-09546-5","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"184 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135479644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An hybrid soft attention based XGBoost model for classification of poikilocytosis blood cells 基于混合软注意的XGBoost模型对异型红细胞的分类
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-06 DOI: 10.1007/s12530-023-09549-2
Prasenjit Dhar, K. Suganya Devi, Satish Kumar Satti, P. Srinivasan
{"title":"An hybrid soft attention based XGBoost model for classification of poikilocytosis blood cells","authors":"Prasenjit Dhar, K. Suganya Devi, Satish Kumar Satti, P. Srinivasan","doi":"10.1007/s12530-023-09549-2","DOIUrl":"https://doi.org/10.1007/s12530-023-09549-2","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the chimp optimization algorithm to evolve deep LSTMs for accounting profit prediction using adaptive pair reinforced technique 利用自适应对增强技术改进黑猩猩优化算法,发展用于会计利润预测的深度lstm
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-05 DOI: 10.1007/s12530-023-09547-4
Chengchen Yang, Tong Wu, Lingzhuo Zeng
Abstract Accurately predicting accounting profit (PAP) plays a vital role in financial analysis and decision-making for businesses. The analysis of a business’s financial achievements offers significant insights and aids in the formulation of strategic plans. This research paper focuses on improving the chimp optimization algorithm (CHOA) to evolve deep long short-term memory (LSTM) models specifically for financial accounting profit prediction. The proposed hybrid approach combines CHOA’s global search capabilities with deep LSTMs’ sequential modeling abilities, considering both the global and temporal aspects of financial data to enhance prediction accuracy. To overcome CHOA’s tendency to get stuck in local minima, a novel updating technique called adaptive pair reinforced (APR) is introduced, resulting in APRCHOA. In addition to well-known conventional prediction models, this study develops five deep LSTM-based models, namely conventional deep LSTM, CHOA (deep LSTM-CHOA), adaptive reinforcement-based genetic algorithm (deep LSTM-ARGA), marine predator algorithm (deep LSTM-MPA), and adaptive reinforced whale optimization algorithm (deep LSTM-ARWOA). To comprehensively evaluate their effectiveness, the developed deep LSTM-APRCHOA models are assessed using statistical error metrics, namely root mean square error (RMSE), bias, and Nash–Sutcliffe efficiency (NSEF). In the validation set, at a lead time of 1 h, the NSEF values for LSTM, LSTM-MPA, LSTM-CHOA, LSTM-ARGA, LSTM-ARWOA, and deep LSTM-APRCHOA were 0.9100, 0.9312, 0.9350, 0.9650, 0.9722, and 0.9801, respectively. The results indicate that among these models, deep LSTM-APRCHOA demonstrates the highest accuracy for financial profit prediction.
摘要准确预测会计利润在企业财务分析和决策中起着至关重要的作用。对企业财务业绩的分析为制定战略计划提供了重要的见解和帮助。本文的研究重点是改进黑猩猩优化算法(CHOA),进化出专门用于财务会计利润预测的深度长短期记忆(LSTM)模型。提出的混合方法结合了CHOA的全局搜索能力和深度lstm的顺序建模能力,同时考虑了金融数据的全局和时间方面,以提高预测精度。为了克服局部最小值问题,引入了一种新的自适应对增强(APR)更新技术,得到了自适应对增强(APRCHOA)。除了众所周知的传统预测模型外,本研究还开发了五种基于深度LSTM的模型,即传统的深度LSTM、CHOA (deep LSTM-CHOA)、基于自适应强化的遗传算法(deep LSTM- arga)、海洋捕食者算法(deep LSTM- mpa)和自适应强化鲸鱼优化算法(deep LSTM- arwoa)。为了全面评估其有效性,开发的深度LSTM-APRCHOA模型使用统计误差指标进行评估,即均方根误差(RMSE),偏差和纳什-萨特克利夫效率(NSEF)。在验证集中,LSTM、LSTM- mpa、LSTM- choa、LSTM- arga、LSTM- arwoa和深度LSTM- aprchoa在提前1 h时的NSEF值分别为0.9100、0.9312、0.9350、0.9650、0.9722和0.9801。结果表明,深度LSTM-APRCHOA模型对财务利润预测的准确率最高。
{"title":"Enhancing the chimp optimization algorithm to evolve deep LSTMs for accounting profit prediction using adaptive pair reinforced technique","authors":"Chengchen Yang, Tong Wu, Lingzhuo Zeng","doi":"10.1007/s12530-023-09547-4","DOIUrl":"https://doi.org/10.1007/s12530-023-09547-4","url":null,"abstract":"Abstract Accurately predicting accounting profit (PAP) plays a vital role in financial analysis and decision-making for businesses. The analysis of a business’s financial achievements offers significant insights and aids in the formulation of strategic plans. This research paper focuses on improving the chimp optimization algorithm (CHOA) to evolve deep long short-term memory (LSTM) models specifically for financial accounting profit prediction. The proposed hybrid approach combines CHOA’s global search capabilities with deep LSTMs’ sequential modeling abilities, considering both the global and temporal aspects of financial data to enhance prediction accuracy. To overcome CHOA’s tendency to get stuck in local minima, a novel updating technique called adaptive pair reinforced (APR) is introduced, resulting in APRCHOA. In addition to well-known conventional prediction models, this study develops five deep LSTM-based models, namely conventional deep LSTM, CHOA (deep LSTM-CHOA), adaptive reinforcement-based genetic algorithm (deep LSTM-ARGA), marine predator algorithm (deep LSTM-MPA), and adaptive reinforced whale optimization algorithm (deep LSTM-ARWOA). To comprehensively evaluate their effectiveness, the developed deep LSTM-APRCHOA models are assessed using statistical error metrics, namely root mean square error (RMSE), bias, and Nash–Sutcliffe efficiency (NSEF). In the validation set, at a lead time of 1 h, the NSEF values for LSTM, LSTM-MPA, LSTM-CHOA, LSTM-ARGA, LSTM-ARWOA, and deep LSTM-APRCHOA were 0.9100, 0.9312, 0.9350, 0.9650, 0.9722, and 0.9801, respectively. The results indicate that among these models, deep LSTM-APRCHOA demonstrates the highest accuracy for financial profit prediction.","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"99 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135724555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speech emotion classification using feature-level and classifier-level fusion 基于特征级和分类器级融合的语音情感分类
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-03 DOI: 10.1007/s12530-023-09550-9
Siba Prasad Mishra, Pankaj Warule, Suman Deb
{"title":"Speech emotion classification using feature-level and classifier-level fusion","authors":"Siba Prasad Mishra, Pankaj Warule, Suman Deb","doi":"10.1007/s12530-023-09550-9","DOIUrl":"https://doi.org/10.1007/s12530-023-09550-9","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"67 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing kernel possibilistic fuzzy C-means clustering using metaheuristic algorithms 利用元启发式算法优化核可能性模糊c均值聚类
4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-10-26 DOI: 10.1007/s12530-023-09542-9
Saumya Singh, Smriti Srivastava
{"title":"Optimizing kernel possibilistic fuzzy C-means clustering using metaheuristic algorithms","authors":"Saumya Singh, Smriti Srivastava","doi":"10.1007/s12530-023-09542-9","DOIUrl":"https://doi.org/10.1007/s12530-023-09542-9","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"4 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134909674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Evolving Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1