Metal Organic Complexation in Seawater: Historical Background and Future Directions.

IF 18.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Annual Review of Marine Science Pub Date : 2024-01-17 Epub Date: 2023-09-18 DOI:10.1146/annurev-marine-033023-083652
James W Moffett, Rene M Boiteau
{"title":"Metal Organic Complexation in Seawater: Historical Background and Future Directions.","authors":"James W Moffett, Rene M Boiteau","doi":"10.1146/annurev-marine-033023-083652","DOIUrl":null,"url":null,"abstract":"<p><p>The speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":"577-599"},"PeriodicalIF":18.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-033023-083652","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海水中的金属有机络合:历史背景与未来方向。
海水中大多数具有生物活性的痕量金属的形态主要是由有机配体络合而成。这篇综述回顾了这一领域的工作历史,从早期使用金属预富集方案进行的回收率低得出奇的观察,到如今质谱和稳定同位素地球化学的进步为有机配体的结构、起源、归宿和生物地球化学影响提供了新的见解。许多长期以来关于海水中嗜硒酸盐等配体的特定生物起源的假说终于得到了验证。这项工作揭示了有机络合的复杂性,其中包含多种配体,在某些情况下,配体交换的时间尺度比最初想象的要慢得多。有机络合对清除作用的影响现已成为生物必需金属(尤其是铁)生物地球化学模型中的一个关键参数。要提高这些模型的实用性,需要对配体的源和汇有新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Marine Science
Annual Review of Marine Science 地学-地球化学与地球物理
CiteScore
33.60
自引率
0.60%
发文量
40
期刊介绍: The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.
期刊最新文献
Wind, Waves, and Surface Currents: Interactions at Mesoscales and Submesoscales The Marine Organic Sulfur Cycle Uncovering the Structural Space of Marine Dissolved Organic Matter The Changing Baltic Sea: Between Nutrient Load Reduction and a Warming Climate Discoveries with Roseobacteraceae: Bacterial Models for Ocean Heterotrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1