Jing Lan, Zijian Sun, Jianyi Feng, Chunlin Zhao, Da Kang, Wenbo Zhu, Tian Zhao, Shengqi Su
{"title":"Unraveling the importance of functionally extreme tadpole types to functional diversity: a case study in temperate montane streams.","authors":"Jing Lan, Zijian Sun, Jianyi Feng, Chunlin Zhao, Da Kang, Wenbo Zhu, Tian Zhao, Shengqi Su","doi":"10.1186/s12983-023-00485-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Functional diversity is important to maintain ecosystem functioning. Species with different ecomorphological traits may display distinct functional roles in ecosystems. Accordingly, functionally extreme species are more important as they can exhibit specific strategies. However, little is known about the distribution patterns of functionally extreme species at a local scale and whether the prior extinction of extreme species can cause significant effects on functional diversity. In addition, no empirical studies have been conducted on the microhabitat determinants of extreme species to maintain the functional diversity.</p><p><strong>Results: </strong>This study collected 1470 tadpoles belonging to 6 families and 20 anuran species. These species were subsequently divided into 65 functional entities based on their developmental stages to incorporate intraspecific traits variability. As a result, we detected seven extreme functional entities, accounting for 10.7% of the total number of entities. Moreover, the prior extinction of extreme entities can lead to a significant decrease in functional diversity compared with the random extinction of entities. Microhabitat variables such as conductivity, water depth, and current velocity determined the distribution of extreme entities.</p><p><strong>Conclusion: </strong>Although the functionally extreme entities only represented a small proportion of the total number of tadpoles, they played irreplaceable roles in maintaining functional diversity. Their extinction may induce high functional vulnerability in tadpole communities. Therefore, anuran species with extreme tadpole traits need to be projected for amphibian conservation.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-023-00485-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Functional diversity is important to maintain ecosystem functioning. Species with different ecomorphological traits may display distinct functional roles in ecosystems. Accordingly, functionally extreme species are more important as they can exhibit specific strategies. However, little is known about the distribution patterns of functionally extreme species at a local scale and whether the prior extinction of extreme species can cause significant effects on functional diversity. In addition, no empirical studies have been conducted on the microhabitat determinants of extreme species to maintain the functional diversity.
Results: This study collected 1470 tadpoles belonging to 6 families and 20 anuran species. These species were subsequently divided into 65 functional entities based on their developmental stages to incorporate intraspecific traits variability. As a result, we detected seven extreme functional entities, accounting for 10.7% of the total number of entities. Moreover, the prior extinction of extreme entities can lead to a significant decrease in functional diversity compared with the random extinction of entities. Microhabitat variables such as conductivity, water depth, and current velocity determined the distribution of extreme entities.
Conclusion: Although the functionally extreme entities only represented a small proportion of the total number of tadpoles, they played irreplaceable roles in maintaining functional diversity. Their extinction may induce high functional vulnerability in tadpole communities. Therefore, anuran species with extreme tadpole traits need to be projected for amphibian conservation.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.