Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING npj Regenerative Medicine Pub Date : 2023-02-11 DOI:10.1038/s41536-023-00282-7
Yong Tan, Xuewen Duan, Bo Wang, Xingguang Liu, Zhenzhen Zhan
{"title":"Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration.","authors":"Yong Tan,&nbsp;Xuewen Duan,&nbsp;Bo Wang,&nbsp;Xingguang Liu,&nbsp;Zhenzhen Zhan","doi":"10.1038/s41536-023-00282-7","DOIUrl":null,"url":null,"abstract":"<p><p>The irreversible loss of cardiomyocytes in the adult heart following cardiac injury leads to adverse cardiac remodeling and ventricular dysfunction. However, the role of B cells in cardiomyocyte proliferation and heart regeneration has not been clarified. Here, we found that the neonatal mice with B cell depletion showed markedly reduced cardiomyocyte proliferation, leading to cardiac dysfunction, fibrosis scar formation, and the complete failure of heart regeneration after apical resection. B cell depletion also significantly impaired heart regeneration and cardiac function in neonatal mice following myocardial infarction (MI). However, B cell depletion in adult mice suppressed tissue inflammation, inhibited myocardial fibrosis, and improved cardiac function after MI. Interestingly, B cell depletion partially restricted cardiomyocyte proliferation in adult mice post-MI. Single-cell RNA sequencing showed that cardiac B cells possessed a more powerful ability to inhibit inflammatory responses and enhance angiogenesis in the postnatal day 1 (P1) mice compared with P7 and adult mice. Besides, the proportion of cardioprotective B cell clusters with high expression levels of S100a6 (S100 calcium-binding protein A6) and S100a4 (S100 calcium-binding protein A4) was greatly decreased in adult heart tissues compared with neonatal mice after cardiac damage. Thus, our study discovers that cardiac B cells in neonatal mice are required for cardiomyocyte proliferation and heart regeneration, while adult B cells promote inflammation and impair cardiac function after myocardial injury.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922252/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-023-00282-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

The irreversible loss of cardiomyocytes in the adult heart following cardiac injury leads to adverse cardiac remodeling and ventricular dysfunction. However, the role of B cells in cardiomyocyte proliferation and heart regeneration has not been clarified. Here, we found that the neonatal mice with B cell depletion showed markedly reduced cardiomyocyte proliferation, leading to cardiac dysfunction, fibrosis scar formation, and the complete failure of heart regeneration after apical resection. B cell depletion also significantly impaired heart regeneration and cardiac function in neonatal mice following myocardial infarction (MI). However, B cell depletion in adult mice suppressed tissue inflammation, inhibited myocardial fibrosis, and improved cardiac function after MI. Interestingly, B cell depletion partially restricted cardiomyocyte proliferation in adult mice post-MI. Single-cell RNA sequencing showed that cardiac B cells possessed a more powerful ability to inhibit inflammatory responses and enhance angiogenesis in the postnatal day 1 (P1) mice compared with P7 and adult mice. Besides, the proportion of cardioprotective B cell clusters with high expression levels of S100a6 (S100 calcium-binding protein A6) and S100a4 (S100 calcium-binding protein A4) was greatly decreased in adult heart tissues compared with neonatal mice after cardiac damage. Thus, our study discovers that cardiac B cells in neonatal mice are required for cardiomyocyte proliferation and heart regeneration, while adult B cells promote inflammation and impair cardiac function after myocardial injury.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠新生心脏B细胞促进心肌细胞增殖和心脏再生。
成人心脏损伤后心肌细胞的不可逆损失可导致不良的心脏重塑和心室功能障碍。然而,B细胞在心肌细胞增殖和心脏再生中的作用尚未明确。在这里,我们发现B细胞缺失的新生小鼠心肌细胞增殖明显减少,导致心功能障碍,纤维化瘢痕形成,根尖切除后心脏再生完全失败。心肌梗死(MI)后,B细胞耗竭也显著损害新生小鼠的心脏再生和心功能。然而,心肌梗死后,成年小鼠的B细胞缺失抑制了组织炎症,抑制了心肌纤维化,改善了心功能。有趣的是,B细胞缺失部分限制了心肌梗死后成年小鼠的心肌细胞增殖。单细胞RNA测序显示,与P7和成年小鼠相比,出生后1天(P1)小鼠的心脏B细胞具有更强的抑制炎症反应和促进血管生成的能力。此外,心脏损伤后成年小鼠心脏组织中高表达S100a6 (S100钙结合蛋白A6)和S100a4 (S100钙结合蛋白A4)的心脏保护B细胞簇比例与新生小鼠相比显著降低。因此,我们的研究发现,新生小鼠的心肌B细胞是心肌细胞增殖和心脏再生所必需的,而成年小鼠的B细胞在心肌损伤后促进炎症和损害心功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
期刊最新文献
Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1