Vitamin A: A Key Inhibitor of Adipocyte Differentiation.

IF 3.5 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL PPAR Research Pub Date : 2023-01-01 DOI:10.1155/2023/7405954
Manal A Malibary
{"title":"Vitamin A: A Key Inhibitor of Adipocyte Differentiation.","authors":"Manal A Malibary","doi":"10.1155/2023/7405954","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor <i>γ</i> and CCAAT-enhancer-binding protein <i>α</i> are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2023 ","pages":"7405954"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908342/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/7405954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein α are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维生素A:脂肪细胞分化的关键抑制剂。
抑制脂肪细胞分化,将前脂肪细胞转化为成熟的功能性脂肪细胞,可能是治疗肥胖和相关代谢紊乱的新途径。过氧化物酶体增殖激活受体γ和ccaat增强结合蛋白α是两种主要的共调节因子,在培养和体内控制脂肪形成。最近的许多研究证实了维甲酸(RA)与胚胎干细胞转化为脂肪细胞之间的关系;然而,这些研究表明RA有效地阻断了前脂肪细胞向成熟脂肪细胞的分化。然而,RA在包括脂肪组织在内的早期组织发育和干细胞分化中的功能作用仍不清楚。本研究重点研究了阻断脂肪细胞分化和维持前脂肪细胞状态的转录因子,重点研究了由RA控制的转录因子。然而,这些新的脂肪生成抑制剂中的一些尚未在体内得到验证,其作用机制需要进一步阐明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PPAR Research
PPAR Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.20
自引率
3.40%
发文量
17
审稿时长
12 months
期刊介绍: PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.
期刊最新文献
Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. Shared Mechanisms in Pparγ1sv and Pparγ2 Expression in 3T3-L1 Cells: Studies on Epigenetic and Positive Feedback Regulation of Pparγ during Adipogenesis. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1