Issouf Traore, Zanakoungo Ibrahima Coulibaly, Kouadio Bernard Allali, Julie-Anne Akiko Tangena, Yao Lucien Konan, Ahoua Yapi, Mireille Dosso
{"title":"Mosquito (Diptera: Culicidae) Larval Ecology in Rubber Plantations and Rural Villages in Dabou (Côte d'Ivoire).","authors":"Issouf Traore, Zanakoungo Ibrahima Coulibaly, Kouadio Bernard Allali, Julie-Anne Akiko Tangena, Yao Lucien Konan, Ahoua Yapi, Mireille Dosso","doi":"10.1007/s10393-022-01594-8","DOIUrl":null,"url":null,"abstract":"<p><p>In Côte d'Ivoire, rubber cultivation has more than doubled since 2010. These mass agricultural areas require a large workforce with little information on how this environment might impact risk of mosquito-borne diseases. The objective of this study was to assess the larval ecology of mosquitoes in rubber areas of Dabou, Côte d'Ivoire. From January to June 2017, an entomological survey was conducted of mature (MP) and immature (IP) rubber plantations, as well as in villages surrounded by rubber plantations (SV) and remote from rubber plantations (RV). The number and type of potential and positive breeding sites were recorded, and mosquito larval densities and diversity were estimated. Seven genera divided into 31 species including major vector such as Anopheles gambiae s.l. and Aedes aegypti were identified. A total of 1,660 waterbodies were identified with a larvae positivity rate of 63.1%. A majority of waterbodies were identified in SV (N = 875, 53.4% positivity rate), followed by MP (N = 422, 81.8% positivity rate), IP (N = 194, 72.2% positivity rate) and least in RV (N = 169, 57.4% positivity rate). The most important breeding sites for disease vectors were leaf axils in IP (N = 108, 77.1%), latex collection cups in MP (N = 332, 96.2%) and the containers abandoned in the SV (N = 242, 51.8%) as well as in the RV (N = 59, 60.8%). All these results allow us to affirm that the cultivation of rubber trees has an impact on the larval ecology by increasing the number of available sites and favoring a high larval density and diversity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10393-022-01594-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In Côte d'Ivoire, rubber cultivation has more than doubled since 2010. These mass agricultural areas require a large workforce with little information on how this environment might impact risk of mosquito-borne diseases. The objective of this study was to assess the larval ecology of mosquitoes in rubber areas of Dabou, Côte d'Ivoire. From January to June 2017, an entomological survey was conducted of mature (MP) and immature (IP) rubber plantations, as well as in villages surrounded by rubber plantations (SV) and remote from rubber plantations (RV). The number and type of potential and positive breeding sites were recorded, and mosquito larval densities and diversity were estimated. Seven genera divided into 31 species including major vector such as Anopheles gambiae s.l. and Aedes aegypti were identified. A total of 1,660 waterbodies were identified with a larvae positivity rate of 63.1%. A majority of waterbodies were identified in SV (N = 875, 53.4% positivity rate), followed by MP (N = 422, 81.8% positivity rate), IP (N = 194, 72.2% positivity rate) and least in RV (N = 169, 57.4% positivity rate). The most important breeding sites for disease vectors were leaf axils in IP (N = 108, 77.1%), latex collection cups in MP (N = 332, 96.2%) and the containers abandoned in the SV (N = 242, 51.8%) as well as in the RV (N = 59, 60.8%). All these results allow us to affirm that the cultivation of rubber trees has an impact on the larval ecology by increasing the number of available sites and favoring a high larval density and diversity.