A detailed redescription of the mesoderm/neural crest cell boundary in the murine orbitotemporal region integrates the mammalian cranium into a pan-amniote cranial configuration

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Evolution & Development Pub Date : 2022-07-31 DOI:10.1111/ede.12411
Shunya Kuroda, Noritaka Adachi, Shigeru Kuratani
{"title":"A detailed redescription of the mesoderm/neural crest cell boundary in the murine orbitotemporal region integrates the mammalian cranium into a pan-amniote cranial configuration","authors":"Shunya Kuroda,&nbsp;Noritaka Adachi,&nbsp;Shigeru Kuratani","doi":"10.1111/ede.12411","DOIUrl":null,"url":null,"abstract":"<p>The morphology of the mammalian chondrocranium appears to differ significantly from those of other amniotes, since the former possesses uniquely developed brain and cranial sensory organs. In particular, a question has long remained unanswered as to the developmental and evolutionary origins of a cartilaginous nodule called the ala hypochiasmatica. In this study, we investigated the embryonic origin of skeletal elements in the murine orbitotemporal region by combining genetic cell lineage analysis with detailed morphological observation. Our results showed that the mesodermal embryonic environment including the ala hypochiasmatica, which appeared as an isolated mesodermal distribution in the neural crest-derived prechordal region, is formed as a part of the mesoderm that continued from the chordal region during early chondrocranial development. The mesoderm/neural crest cell boundary in the head mesenchyme is modified through development, resulting in the secondary mesodermal expansion to invade into the prechordal region. We thus revealed that the ala hypochiasmatica develops as the frontier of the mesodermal sheet stretched along the cephalic flexure. These results suggest that the mammalian ala hypochiasmatica has evolved from a part of the mesodermal primary cranial wall in ancestral amniotes. In addition, the endoskeletal elements in the orbitotemporal region, such as the orbital cartilage, suprapterygoid articulation of the palatoquadrate, and trabecula, some of which were once believed to represent primitive traits of amniotes and to be lost in the mammalian lineage, have been confirmed to exist in the mammalian cranium. Consequently, the mammalian chondrocranium can now be explained in relation to the pan-amniote cranial configuration.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12411","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The morphology of the mammalian chondrocranium appears to differ significantly from those of other amniotes, since the former possesses uniquely developed brain and cranial sensory organs. In particular, a question has long remained unanswered as to the developmental and evolutionary origins of a cartilaginous nodule called the ala hypochiasmatica. In this study, we investigated the embryonic origin of skeletal elements in the murine orbitotemporal region by combining genetic cell lineage analysis with detailed morphological observation. Our results showed that the mesodermal embryonic environment including the ala hypochiasmatica, which appeared as an isolated mesodermal distribution in the neural crest-derived prechordal region, is formed as a part of the mesoderm that continued from the chordal region during early chondrocranial development. The mesoderm/neural crest cell boundary in the head mesenchyme is modified through development, resulting in the secondary mesodermal expansion to invade into the prechordal region. We thus revealed that the ala hypochiasmatica develops as the frontier of the mesodermal sheet stretched along the cephalic flexure. These results suggest that the mammalian ala hypochiasmatica has evolved from a part of the mesodermal primary cranial wall in ancestral amniotes. In addition, the endoskeletal elements in the orbitotemporal region, such as the orbital cartilage, suprapterygoid articulation of the palatoquadrate, and trabecula, some of which were once believed to represent primitive traits of amniotes and to be lost in the mammalian lineage, have been confirmed to exist in the mammalian cranium. Consequently, the mammalian chondrocranium can now be explained in relation to the pan-amniote cranial configuration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对小鼠眶颞区中胚层/神经嵴细胞边界的详细重新描述将哺乳动物颅骨整合到泛羊膜颅骨结构中
哺乳动物软骨颅骨的形态似乎与其他羊膜动物有很大的不同,因为前者具有独特的发达的大脑和颅感觉器官。特别是,一个问题长期以来仍未得到解答,即软骨结节的发育和进化起源,称为ala交叉下。在这项研究中,我们通过结合遗传细胞谱系分析和详细的形态学观察来研究小鼠眶颞区骨骼元件的胚胎起源。我们的研究结果表明,中胚层胚胎环境,包括ala hypochiasmatic,作为一个孤立的中胚层分布出现在神经嵴衍生的脊索前区,是在早期软骨发育期间从脊索区继续形成的中胚层的一部分。头部间充质的中胚层/神经嵴细胞边界在发育过程中发生改变,导致继发性中胚层扩张侵入脊索前区。因此,我们发现ala交叉下沿中胚层沿头屈伸展的边界发育。这些结果表明,哺乳动物的下交叉是由祖先羊膜动物的中胚层初级颅壁的一部分进化而来的。此外,眶颞区的内骨骼元素,如眶软骨、腭方骨上关节和小梁,其中一些曾被认为代表羊膜动物的原始特征,在哺乳动物谱系中已经消失,已被证实存在于哺乳动物颅骨中。因此,哺乳动物的软骨头盖骨现在可以解释与泛羊膜颅骨结构的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
期刊最新文献
Issue information A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia. Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution Front cover Issue information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1