Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus.

IF 2.1 4区 医学 Q2 BIOLOGY International Journal of Radiation Biology Pub Date : 2023-01-01 DOI:10.1080/09553002.2020.1815889
Andrey A Rosenkranz, Tatiana A Slastnikova, Mikhail O Durymanov, Georgii P Georgiev, Alexander S Sobolev
{"title":"Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus.","authors":"Andrey A Rosenkranz,&nbsp;Tatiana A Slastnikova,&nbsp;Mikhail O Durymanov,&nbsp;Georgii P Georgiev,&nbsp;Alexander S Sobolev","doi":"10.1080/09553002.2020.1815889","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus.</p><p><strong>Purpose: </strong>This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed.</p><p><strong>Conclusion: </strong>Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553002.2020.1815889","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2020.1815889","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Background: The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus.

Purpose: This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed.

Conclusion: Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有效的核输入,将俄歇电子发射器有效地输送到细胞核中。
背景:俄歇电子(AEs)在癌症治疗中最吸引人的特点是其极短的范围和足够高的线性能量转移(LET)。声发射体的细胞毒性作用只能在敏感细胞靶点附近实现,如果位于细胞外,则可以忽略不计。细胞核被认为是对高LET粒子最敏感的隔室。因此,声发射体的使用可能在特定识别癌细胞和将声发射体递送到其细胞核中最有用。目的:本文综述了利用声发射体向靶癌细胞细胞核递送有效抗癌药物的研究进展。本文讨论了肽基缀合物、纳米颗粒、重组蛋白和其他结构物在AE发射器靶向核内递送中的应用以及它们的优点和局限性。结论:AE发射器从细胞质转运到细胞核并与癌细胞结合是其传递的关键阶段之一;因此,开发了几种利用这种传输的结构。转运是通过核孔复合物(NPC)进行的,利用特定的氨基酸核定位序列(NLS)和位于细胞质溶胶中的名为importins的载体蛋白。因此,含有nls的递送构建体的有效性也取决于它们能否有效进入靶细胞的细胞质。该递送构建体旨在提供AE发射器进入癌细胞细胞核的能量依赖运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
11.50%
发文量
142
审稿时长
3 months
期刊介绍: The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.
期刊最新文献
Value of 18F-FDG PET/CT-based radiomics features for differentiating primary lung cancer and solitary lung metastasis in patients with colorectal adenocarcinoma. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model Long-term biological effects after acute 131I-administration of two rat models (with and without thyroid). The elicitation effects of diode and He-Ne laser irradiations on the alleviation of nutrient-deficiency induced damage in anthocyanin-producing red-fleshed apple cell suspension. Gamma-rays induced genome wide stable mutations in cowpea deciphered through whole genome sequencing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1