In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review.

IF 2.1 4区 医学 Q2 BIOLOGY International Journal of Radiation Biology Pub Date : 2023-01-01 DOI:10.1080/09553002.2022.2078007
Anis Javadi, Mohammad Reza Nikhbakht, Javad Ghasemian Yadegari, Auob Rustamzadeh, Mohsen Mohammadi, Alireza Shirazinejad, Saleh Azadbakht, Zahra Abdi
{"title":"In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review.","authors":"Anis Javadi,&nbsp;Mohammad Reza Nikhbakht,&nbsp;Javad Ghasemian Yadegari,&nbsp;Auob Rustamzadeh,&nbsp;Mohsen Mohammadi,&nbsp;Alireza Shirazinejad,&nbsp;Saleh Azadbakht,&nbsp;Zahra Abdi","doi":"10.1080/09553002.2022.2078007","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects.</p><p><strong>Methods: </strong>The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds.</p><p><strong>Results: </strong>Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals.</p><p><strong>Conclusion: </strong>In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 2","pages":"155-165"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2022.2078007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects.

Methods: The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds.

Results: Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals.

Conclusion: In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然化合物和化学化合物辐射防护潜力的体内和体外评估:综述。
目的:研究天然物质和化学物质对人体和动物的放射性作用一直是一些研究人员研究的课题。因此,回顾过去和目前在这一领域进行的一些研究,可以提供有用的信息来阐明辐射防护成分在减少辐射暴露副作用方面的重要性。方法:作者在ScienceDirect、Scopus、Pubmed和Google Scholar数据库中搜索关键词In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin,获取先前发表的文章,并搜索更多关于天然和化学化合物中放射性防护材料作用的参考文章。结果:辐射暴露可在体内产生活性氧(ROS),但其中大部分被机体的自然机制所消除,但当机体的抗氧化系统没有足够的能力来中和自由基时,就会发生氧化应激,从而导致DNA和机体组织的损伤。因此,有必要使用减少和抑制自由基的替代物质。结论:一般来说,推荐抗氧化成分可以保护人体或动物的组织损伤,因为它们具有清除电离辐射产生的自由基的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
11.50%
发文量
142
审稿时长
3 months
期刊介绍: The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.
期刊最新文献
Value of 18F-FDG PET/CT-based radiomics features for differentiating primary lung cancer and solitary lung metastasis in patients with colorectal adenocarcinoma. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model Long-term biological effects after acute 131I-administration of two rat models (with and without thyroid). The elicitation effects of diode and He-Ne laser irradiations on the alleviation of nutrient-deficiency induced damage in anthocyanin-producing red-fleshed apple cell suspension. Gamma-rays induced genome wide stable mutations in cowpea deciphered through whole genome sequencing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1