Extensive Recoding of the Neural Proteome in Cephalopods by RNA Editing.

IF 8.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Annual Review of Animal Biosciences Pub Date : 2023-02-15 DOI:10.1146/annurev-animal-060322-114534
Joshua J C Rosenthal, Eli Eisenberg
{"title":"Extensive Recoding of the Neural Proteome in Cephalopods by RNA Editing.","authors":"Joshua J C Rosenthal,&nbsp;Eli Eisenberg","doi":"10.1146/annurev-animal-060322-114534","DOIUrl":null,"url":null,"abstract":"<p><p>The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":"11 ","pages":"57-75"},"PeriodicalIF":8.7000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-060322-114534","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过RNA编辑对头足类动物神经蛋白质组的广泛重新编码。
在所有无脊椎动物中,胶体头足类动物拥有最大的大脑,并表现出最复杂的行为。这些显著进步背后的分子和细胞机制在很大程度上仍未被探索。对鱿鱼离子通道转录本的早期分子克隆研究发现了异常大量的A→I RNA编辑位点,这些位点编码密码子。对其他神经转录物的进一步克隆也显示出类似的模式。深度测序技术和相关生物信息学的出现,使得在各种头足类动物的整个神经转录组中绘制RNA编辑事件的图谱成为可能。结果是显著的:它们包含的编码编辑位点比任何其他分类单元都要多出数量级。尽管RNA编辑位点在大多数多细胞后生动物中丰富,但它们很少重新编码。在头足类动物中,大多数神经转录本被重新编码。最近的研究集中在这些事件是否具有适应性,以及头足类动物RNA编辑的其他非规范方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Animal Biosciences
Annual Review of Animal Biosciences BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ZOOLOGY
CiteScore
21.30
自引率
0.80%
发文量
31
期刊介绍: The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.
期刊最新文献
Comparative Genomics and Epigenomics of Transcriptional Regulation. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. A One Health Approach to Reducing Livestock Disease Prevalence in Developing Countries: Advances, Challenges, and Prospects. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1