Yuqi Tang, Huaiyu Wu, Paul Klippel, Bohua Zhang, Hsiao-Ying Shadow Huang, Yun Jing, Xiaoning Jiang, Junjie Yao
{"title":"Deep thrombosis characterization using photoacoustic imaging with intravascular light delivery.","authors":"Yuqi Tang, Huaiyu Wu, Paul Klippel, Bohua Zhang, Hsiao-Ying Shadow Huang, Yun Jing, Xiaoning Jiang, Junjie Yao","doi":"10.1007/s13534-022-00216-0","DOIUrl":null,"url":null,"abstract":"<p><p>Venous thromboembolism (VTE) is a condition in which blood clots form within the deep veins of the leg or pelvis to cause deep vein thrombosis. The optimal treatment of VTE is determined by thrombus properties such as the age, size, and chemical composition of the blood clots. The thrombus properties can be readily evaluated by using photoacoustic computed tomography (PACT), a hybrid imaging modality that combines the rich contrast of optical imaging and deep penetration of ultrasound imaging. With inherent sensitivity to endogenous chromophores such as hemoglobin, multispectral PACT can provide composition information and oxygenation level in the clots. However, conventional PACT of clots relies on external light illumination, which provides limited penetration depth due to strong optical scattering of intervening tissue. In our study, this depth limitation is overcome by using intravascular light delivery with a thin optical fiber. To demonstrate in vitro blood clot characterization, clots with different acuteness and oxygenation levels were placed underneath ten-centimeter-thick chicken breast tissue and imaged using multiple wavelengths. Acoustic frequency analysis was performed on the received PA channel signals, and oxygenation level was estimated using multispectral linear spectral unmixing. The results show that, with intravascular light delivery, clot oxygenation level can be accurately measured, and the clot age can thus be estimated. In addition, we found that retracted and unretracted clots had different acoustic frequency spectrum. While unretracted clots had stronger high frequency components, retracted clots had much higher low frequency components due to densely packed red blood cells. The PACT characterization of the clots was consistent with the histology results and mechanical tests.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"12 2","pages":"135-145"},"PeriodicalIF":3.2000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046522/pdf/13534_2022_Article_216.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00216-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Venous thromboembolism (VTE) is a condition in which blood clots form within the deep veins of the leg or pelvis to cause deep vein thrombosis. The optimal treatment of VTE is determined by thrombus properties such as the age, size, and chemical composition of the blood clots. The thrombus properties can be readily evaluated by using photoacoustic computed tomography (PACT), a hybrid imaging modality that combines the rich contrast of optical imaging and deep penetration of ultrasound imaging. With inherent sensitivity to endogenous chromophores such as hemoglobin, multispectral PACT can provide composition information and oxygenation level in the clots. However, conventional PACT of clots relies on external light illumination, which provides limited penetration depth due to strong optical scattering of intervening tissue. In our study, this depth limitation is overcome by using intravascular light delivery with a thin optical fiber. To demonstrate in vitro blood clot characterization, clots with different acuteness and oxygenation levels were placed underneath ten-centimeter-thick chicken breast tissue and imaged using multiple wavelengths. Acoustic frequency analysis was performed on the received PA channel signals, and oxygenation level was estimated using multispectral linear spectral unmixing. The results show that, with intravascular light delivery, clot oxygenation level can be accurately measured, and the clot age can thus be estimated. In addition, we found that retracted and unretracted clots had different acoustic frequency spectrum. While unretracted clots had stronger high frequency components, retracted clots had much higher low frequency components due to densely packed red blood cells. The PACT characterization of the clots was consistent with the histology results and mechanical tests.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.