A high performance heterogeneous hardware architecture for brain computer interface.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical Engineering Letters Pub Date : 2024-11-08 eCollection Date: 2025-01-01 DOI:10.1007/s13534-024-00438-4
Zhengbo Cai, Penghai Li, Longlong Cheng, Ding Yuan, Mingji Li, Hongji Li
{"title":"A high performance heterogeneous hardware architecture for brain computer interface.","authors":"Zhengbo Cai, Penghai Li, Longlong Cheng, Ding Yuan, Mingji Li, Hongji Li","doi":"10.1007/s13534-024-00438-4","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interface (BCI) has been widely used in human-computer interaction. The introduction of artificial intelligence has further improved the performance of BCI system. In recent years, the development of BCI has gradually shifted from personal computers to embedded devices, which boasts lower power consumption and smaller size, but at the cost of limited device resources and computing speed, thus can hardly improve the support of complex algorithms. This paper proposes a heterogeneous BCI architecture based on ARM + FPGA, enabling real-time processing of electroencephalogram (EEG) signals. Adopting data quantization, layer fusion and data augmentation to optimize the compact neural network model EEGNet, and design dedicated hardware engines to accelerate the network. Experimental results show that the system achieves 93.3% classification accuracy for steady-state visual evoked potential signals, with a time delay of 0.2 ms per trail, and a power consumption of approximately (1.91 W). That is 31.5 times faster acceleration is realized at the cost of only 0.7% lower accuracy compared with the conventional processor. The results show that the BCI architecture proposed in this study has strong practicability and high research significance.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 1","pages":"217-227"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00438-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interface (BCI) has been widely used in human-computer interaction. The introduction of artificial intelligence has further improved the performance of BCI system. In recent years, the development of BCI has gradually shifted from personal computers to embedded devices, which boasts lower power consumption and smaller size, but at the cost of limited device resources and computing speed, thus can hardly improve the support of complex algorithms. This paper proposes a heterogeneous BCI architecture based on ARM + FPGA, enabling real-time processing of electroencephalogram (EEG) signals. Adopting data quantization, layer fusion and data augmentation to optimize the compact neural network model EEGNet, and design dedicated hardware engines to accelerate the network. Experimental results show that the system achieves 93.3% classification accuracy for steady-state visual evoked potential signals, with a time delay of 0.2 ms per trail, and a power consumption of approximately (1.91 W). That is 31.5 times faster acceleration is realized at the cost of only 0.7% lower accuracy compared with the conventional processor. The results show that the BCI architecture proposed in this study has strong practicability and high research significance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高性能的脑机接口异构硬件架构。
脑机接口(BCI)在人机交互中得到了广泛的应用。人工智能的引入进一步提高了BCI系统的性能。近年来,BCI的发展逐渐从个人计算机转向嵌入式设备,这种设备功耗更低,体积更小,但以有限的设备资源和计算速度为代价,难以提高对复杂算法的支持。提出了一种基于ARM + FPGA的异构脑机接口架构,实现了对脑电图信号的实时处理。采用数据量化、层融合和数据增强等方法对紧凑神经网络模型EEGNet进行优化,并设计专用硬件引擎对网络进行加速。实验结果表明,该系统对稳态视觉诱发电位信号的分类准确率为93.3%,每道滞后时间为0.2 ms,功耗约为1.91 W,加速速度提高了31.5倍,准确率仅比传统处理器低0.7%。结果表明,本研究提出的BCI架构具有较强的实用性和较高的研究意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
期刊最新文献
Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna. Unveiling the endocrine connections of NAFLD: evidence from a comprehensive mendelian randomization study. Brain-inspired learning rules for spiking neural network-based control: a tutorial. Alzheimer's disease recognition based on waveform and spectral speech signal processing. A high performance heterogeneous hardware architecture for brain computer interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1