Self-Isolation and Testing Behaviour During the COVID-19 Pandemic: An Agent-Based Model

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2023-01-02 DOI:10.1162/artl_a_00392
Umberto Gostoli;Eric Silverman
{"title":"Self-Isolation and Testing Behaviour During the COVID-19 Pandemic: An Agent-Based Model","authors":"Umberto Gostoli;Eric Silverman","doi":"10.1162/artl_a_00392","DOIUrl":null,"url":null,"abstract":"Since the beginning of the COVID-19 pandemic, various models of virus spread have been proposed. While most of these models focused on the replication of the interaction processes through which the virus is passed on from infected agents to susceptible ones, less effort has been devoted to the process through which agents modify their behaviour as they adapt to the risks posed by the pandemic. Understanding the way agents respond to COVID-19 spread is important, as this behavioural response affects the dynamics of virus spread by modifying interaction patterns. In this article, we present an agent-based model that includes a behavioural module determining agent testing and isolation propensity in order to understand the role of various behavioural parameters in the spread of COVID-19.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10302042/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Since the beginning of the COVID-19 pandemic, various models of virus spread have been proposed. While most of these models focused on the replication of the interaction processes through which the virus is passed on from infected agents to susceptible ones, less effort has been devoted to the process through which agents modify their behaviour as they adapt to the risks posed by the pandemic. Understanding the way agents respond to COVID-19 spread is important, as this behavioural response affects the dynamics of virus spread by modifying interaction patterns. In this article, we present an agent-based model that includes a behavioural module determining agent testing and isolation propensity in order to understand the role of various behavioural parameters in the spread of COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19大流行期间的自我隔离和检测行为:一个基于主体的模型
自COVID-19大流行开始以来,人们提出了各种病毒传播模型。虽然这些模型大多侧重于复制病毒从受感染病原体向易感病原体传播的相互作用过程,但对病原体在适应大流行带来的风险时改变其行为的过程投入的努力较少。了解病原体对COVID-19传播的反应方式很重要,因为这种行为反应通过改变相互作用模式影响病毒传播的动态。在本文中,我们提出了一个基于代理的模型,其中包括一个决定代理测试和隔离倾向的行为模块,以了解各种行为参数在COVID-19传播中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
(A)Life as It Could Be. Comment on Randall D. Beer's "A(Life) as It Could Be". How Brains Perceive the World. On Recombination. Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1