Some Like It Hot: Dynamic Control of Cav2.2 Channels By Chili Peppers.

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-01-01 DOI:10.1093/function/zqac066
Paz Duran, Rajesh Khanna
{"title":"Some Like It Hot: Dynamic Control of Cav2.2 Channels By Chili Peppers.","authors":"Paz Duran, Rajesh Khanna","doi":"10.1093/function/zqac066","DOIUrl":null,"url":null,"abstract":"Spicy meals causes the production of happy endorphins together with the triggering of heat and pain, similar to a runner’s high. The active ingredient in hot chili peppers that causes their distinctive burning sensation is called capsaicin (8-methylN-vanillyl-6-nonenamide). This bioactive substance binds to the primary afferent neurons’ transient receptor potential vanilloid 1 (TRPV1) cation channels, which when activated, cause a sensation of heat. Capsaicin has been utilized as a tool to study the regulation of pain since TRPV1 channels have been reported to be crucial for heat nociception.1 Despite reports that capsaicin binding to TRPV1 channels causes pain, it has been demonstrated that prolonged exposures to capsaicin can desensitize dorsal root ganglion (DRG) neurons, thus reducing afferent drive and reducing synaptic transmission in the dorsal horn.2 Several studies have established that voltage-gated calcium channels (VGCCs) are key modulators of nociceptive and nociplastic pain.3 VGCCs are transmembrane proteins composed of a principal pore-forming α subunit that mediates Ca2+ entry into the cell in response to membrane potential changes. Based on their biophysical characteristics, VGCCs are classified into low voltage activated (LVA) and high voltage activated (HVA) families. HVA channels are typically expressed with auxiliary subunits β and α2δ that regulate the trafficking and function of these channels. The N-type calcium channel, also known as CaV2.2, is a member of the HVA family that is expressed at high levels in sensory neurons where they are key mediators of neurotransmitter release and the transmission of sensory information from the periphery to central sites.4 Given that CaV2.2 channels are the main presynaptic VGCCs and have a critical role in regulating nociceptive transmission, it is reasonable to predict a regulation mediated by capsaicin and TRPV1. However, little is known about the underlying mechanisms of the functional interaction between these channels and their presynaptic function. This gap in knowledge was explored in a very ingenious way by Krishma Ramgoolam and Annette Dolphin in a new study reported in this issue of FUNCTION.5The authors build on their long-standing expertise of N-type calcium channels (CaV2.2) to investigate their functional presynaptic expression and explore their interaction with TRPV1 channels in primary nociceptors. Here, the Dolphin group used their previously described CaV2.2 HA knock-in mouse line, which expresses CaV2.2 with a hemagglutinin (HA) exofacial epitope tag to easily localize endogenous CaV2.2 channels.5 Using co-cultures of DRG neurons isolated from CaV2.2 HA knock-in mice with spinal cord neurons from wild-type (WT) mice and approaches, including immunofluorescence staining and calcium imaging, this study investigated the neuronal maturation, synapse formation, distribution, and presynaptic function of the tagged Ntype calcium channels. First, CaV2.2 localization during neuronal maturation and synapse formation was explored using immunofluorescence staining. CaV2.2 HA expression over time showed a decrease in cell surface expression at the cell body of DRG neurons that was accompanied by a commensurate significant increase at presynaptic terminals. The authors then extended the characterization of the development of CaV2.2 HA expression at presynaptic boutons using super-resolution microscopy and found that, in mature cultures, the channels were closely juxtaposed to synaptic markers Homer, RIM 1/2 and vGlut2, suggesting the formation of mature synapses. Next, using live-cell calcium imaging","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqac066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spicy meals causes the production of happy endorphins together with the triggering of heat and pain, similar to a runner’s high. The active ingredient in hot chili peppers that causes their distinctive burning sensation is called capsaicin (8-methylN-vanillyl-6-nonenamide). This bioactive substance binds to the primary afferent neurons’ transient receptor potential vanilloid 1 (TRPV1) cation channels, which when activated, cause a sensation of heat. Capsaicin has been utilized as a tool to study the regulation of pain since TRPV1 channels have been reported to be crucial for heat nociception.1 Despite reports that capsaicin binding to TRPV1 channels causes pain, it has been demonstrated that prolonged exposures to capsaicin can desensitize dorsal root ganglion (DRG) neurons, thus reducing afferent drive and reducing synaptic transmission in the dorsal horn.2 Several studies have established that voltage-gated calcium channels (VGCCs) are key modulators of nociceptive and nociplastic pain.3 VGCCs are transmembrane proteins composed of a principal pore-forming α subunit that mediates Ca2+ entry into the cell in response to membrane potential changes. Based on their biophysical characteristics, VGCCs are classified into low voltage activated (LVA) and high voltage activated (HVA) families. HVA channels are typically expressed with auxiliary subunits β and α2δ that regulate the trafficking and function of these channels. The N-type calcium channel, also known as CaV2.2, is a member of the HVA family that is expressed at high levels in sensory neurons where they are key mediators of neurotransmitter release and the transmission of sensory information from the periphery to central sites.4 Given that CaV2.2 channels are the main presynaptic VGCCs and have a critical role in regulating nociceptive transmission, it is reasonable to predict a regulation mediated by capsaicin and TRPV1. However, little is known about the underlying mechanisms of the functional interaction between these channels and their presynaptic function. This gap in knowledge was explored in a very ingenious way by Krishma Ramgoolam and Annette Dolphin in a new study reported in this issue of FUNCTION.5The authors build on their long-standing expertise of N-type calcium channels (CaV2.2) to investigate their functional presynaptic expression and explore their interaction with TRPV1 channels in primary nociceptors. Here, the Dolphin group used their previously described CaV2.2 HA knock-in mouse line, which expresses CaV2.2 with a hemagglutinin (HA) exofacial epitope tag to easily localize endogenous CaV2.2 channels.5 Using co-cultures of DRG neurons isolated from CaV2.2 HA knock-in mice with spinal cord neurons from wild-type (WT) mice and approaches, including immunofluorescence staining and calcium imaging, this study investigated the neuronal maturation, synapse formation, distribution, and presynaptic function of the tagged Ntype calcium channels. First, CaV2.2 localization during neuronal maturation and synapse formation was explored using immunofluorescence staining. CaV2.2 HA expression over time showed a decrease in cell surface expression at the cell body of DRG neurons that was accompanied by a commensurate significant increase at presynaptic terminals. The authors then extended the characterization of the development of CaV2.2 HA expression at presynaptic boutons using super-resolution microscopy and found that, in mature cultures, the channels were closely juxtaposed to synaptic markers Homer, RIM 1/2 and vGlut2, suggesting the formation of mature synapses. Next, using live-cell calcium imaging

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辣椒对Cav2.2通道的动态控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Exploring Circadian Changes in Muscle Physiology: Methodological Considerations. Malaria and Hypertension: What Is the Direction of Association? Impaired neurocirculatory control in chronic kidney disease: New evidence for blunted sympathetic baroreflex and reduced sympathetic transduction. Intrinsic Skeletal Muscle Function and Contraction-stimulated Glucose Uptake Do Not Vary by Time-of-day in Mice. Managing SABV in Physiological Research: Best Practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1