首页 > 最新文献

Function (Oxford, England)最新文献

英文 中文
The P2Y6 Receptor as a Potential Keystone in Essential Hypertension. P2Y6 受体是治疗原发性高血压的潜在基石。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae045
Nuria Daghbouche-Rubio, Inés Álvarez-Miguel, Victor Alejandro Flores, Jorge Rojo-Mencía, Manuel Navedo, Madeleine Nieves-Citrón, Pilar Cidad, M Teresa Pérez-García, José R López-López

Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from Blood Pressure Normal (BPN) and Blood Pressure High (BPH) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µm UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity ligation assay and super-resolution microscopy showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.

本质性高血压(HT)是一种高发的心血管疾病,其生理病理尚不清楚。药理学研究表明,嘌呤能 P2Y6 受体(P2ry6)在心血管功能中发挥重要作用,并可能导致血管紧张素 II(AgtII)的病理生理效应。在这里,我们检验了 P2ry6 和 AgtII 受体之间的功能耦合介导 HT 血管反应性改变的假设。为此,我们使用肠系膜血管平滑肌细胞(VSMC)和来自 BPN(血压正常)和 BPH(血压高)小鼠的动脉采用了一种多管齐下的方法。肠系膜动脉 VSMC 的差异转录组图谱发现,P2ry6 嘌呤能受体 mRNA 是 BPH 中上调最多的转录本之一。P2Y 受体激活在 BPN 和 BPH 小鼠的肠系膜动脉中引起了不同的血管反应。因此,10 µM UTP 在 BPH 小鼠的肠系膜动脉中产生了接近半极限激活的收缩,但在 BPN 小鼠的血管中却没有反应。尽管BPH小鼠的AgtII受体1型(Agtr1)表达较低,但AgtII诱导的收缩也较高,并且对P2ry6调节剂敏感。近端连接试验(PLA)和超分辨率显微镜(SRM)显示,Agtr1 和 P2ry6 在 BPH 小鼠膜上/膜附近的定位更接近。在 BPN 小鼠中,这种近端结合减少,表明 Agtr1-P2ry6 复合物在高血压表型中的功能性作用。耐人寻味的是,BPN 小鼠对 AgtII 诱导的高血压有抵抗力,并且在 VSMC 中显示出 P2ry6 表达减少。总之,研究结果表明,P2ry6 和 Agtr1 之间功能性耦合的增加可能会导致高血压期间血管反应性的增强。因此,阻断 P2ry6 可能是治疗 HT 的一种潜在药物策略。
{"title":"The P2Y6 Receptor as a Potential Keystone in Essential Hypertension.","authors":"Nuria Daghbouche-Rubio, Inés Álvarez-Miguel, Victor Alejandro Flores, Jorge Rojo-Mencía, Manuel Navedo, Madeleine Nieves-Citrón, Pilar Cidad, M Teresa Pérez-García, José R López-López","doi":"10.1093/function/zqae045","DOIUrl":"10.1093/function/zqae045","url":null,"abstract":"<p><p>Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from Blood Pressure Normal (BPN) and Blood Pressure High (BPH) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µm UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity ligation assay and super-resolution microscopy showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PARticularly Forceful: PAR1 Drives Glomerular Mesangial Cell Contractility. 特别有力:PAR1 驱动肾小球间质细胞收缩。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae044
Amanda P Waller, Kaushik Muralidharan, Bryce A Kerlin
{"title":"PARticularly Forceful: PAR1 Drives Glomerular Mesangial Cell Contractility.","authors":"Amanda P Waller, Kaushik Muralidharan, Bryce A Kerlin","doi":"10.1093/function/zqae044","DOIUrl":"10.1093/function/zqae044","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired Neurocirculatory Control in Chronic Kidney Disease: New Evidence for Blunted Sympathetic Baroreflex and Reduced Sympathetic Transduction. 慢性肾脏病的神经循环控制受损:交感神经巴氏反射减弱和交感神经传导功能降低的新证据。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae036
Jeann L Sabino-Carvalho, Elsa Mekonnen, Matias Zanuzzi, Sabrina Li, Xiangqin Cui, Jeanie Park

Chronic kidney disease (CKD) is characterized by over-activation of the sympathetic nervous system (SNS) that increases cardiovascular risk. Whether sympathetic baroreflex sensitivity (sBRS) is impaired or intact in CKD remains under-studied and controversial. Furthermore, the downstream effect of SNS activation on blood pressure transduction has not been previously examined in CKD. We tested the hypothesis that sBRS is attenuated, while sympathetic transduction is augmented in CKD. In 18 sedentary patients with CKD stages III-IV (eGFR: 40±14 mL/min) and 13 age-matched controls (eGFR: 95±10 mL/min), beat-to-beat blood pressure (BP; finger photoplethysmography), heart rate (electrocardiography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest for 10-min. Weighted linear regression analysis between MSNA burst incidence and diastolic BP was used to determine the spontaneous sBRS. Sympathetic-BP transduction was quantified using signal averaging, whereby the BP response to each MSNA burst was tracked over 15 cardiac cycles and averaged to derive the peak change in BP. Compared with controls, CKD patients had an attenuated sBRS [CKD: -1.34 ± 0.59 versus CON: -2.91 ± 1.09 bursts (100 heartbeats)-1 mmHg-1; P = 0.001]. |sBRS| was significantly associated with eGFR (r = 0.69, P < 0.001). CKD patients had attenuated sympathetic-BP transduction compared to controls (0.75 ± 0.7 vs. 1.60 ± 0.8 mmHg; P = 0.010). Resting MSNA was negatively associated with sympathetic transduction (r = -0.57, P = 0.002). CKD patients exhibit impaired sBRS that may contribute to SNS overactivation and cardiovascular risk in this patient population. In addition, CKD patients had an attenuated sympathetic transduction that may counteract the vascular effects of SNS overactivation.

背景:慢性肾脏病(CKD)的特点是交感神经系统(SNS)过度激活,从而增加了心血管风险。对于慢性肾脏病患者的交感神经巴反射敏感性(sBRS)是受损还是完好,研究仍然不足且存在争议。此外,在 CKD 中,交感神经系统激活对血压传导的下游影响尚未得到研究。我们测试了这样一个假设:在 CKD 中,sBRS 会减弱,而交感神经传导会增强:方法:在 18 名静坐的 CKD III-IV 期患者(eGFR:40±14 ml/min)和 13 名年龄匹配的对照组患者(eGFR:95±10 ml/min)中,记录静息 10 分钟的搏动血压(BP;指压式血压计)、心率(心电图)和肌肉交感神经活动(MSNA;微神经电图)。MSNA 爆发发生率与舒张压之间的加权线性回归分析用于确定自发性 sBRS。交感神经-血压传导采用信号平均法进行量化,即在 15 个心动周期内跟踪每个 MSNA 阵发的血压反应,然后取平均值,得出血压的峰值变化:与对照组相比,CKD 患者的 sBRS 有所减弱[CKD:-1.34±0.59 对对照组:-2.91±1.09 阵发性(100 次心跳)-1 mmHg-1;P=0.001]。|sBRS 与 eGFR 显著相关(r=0.69,PC 结论:慢性肾功能衰竭患者的 sBRS 功能受损,可能会导致 SNS 过度激活和心血管风险。此外,慢性肾脏病患者的交感神经传导功能减弱,可能会抵消 SNS 过度激活对血管的影响。
{"title":"Impaired Neurocirculatory Control in Chronic Kidney Disease: New Evidence for Blunted Sympathetic Baroreflex and Reduced Sympathetic Transduction.","authors":"Jeann L Sabino-Carvalho, Elsa Mekonnen, Matias Zanuzzi, Sabrina Li, Xiangqin Cui, Jeanie Park","doi":"10.1093/function/zqae036","DOIUrl":"10.1093/function/zqae036","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is characterized by over-activation of the sympathetic nervous system (SNS) that increases cardiovascular risk. Whether sympathetic baroreflex sensitivity (sBRS) is impaired or intact in CKD remains under-studied and controversial. Furthermore, the downstream effect of SNS activation on blood pressure transduction has not been previously examined in CKD. We tested the hypothesis that sBRS is attenuated, while sympathetic transduction is augmented in CKD. In 18 sedentary patients with CKD stages III-IV (eGFR: 40±14 mL/min) and 13 age-matched controls (eGFR: 95±10 mL/min), beat-to-beat blood pressure (BP; finger photoplethysmography), heart rate (electrocardiography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest for 10-min. Weighted linear regression analysis between MSNA burst incidence and diastolic BP was used to determine the spontaneous sBRS. Sympathetic-BP transduction was quantified using signal averaging, whereby the BP response to each MSNA burst was tracked over 15 cardiac cycles and averaged to derive the peak change in BP. Compared with controls, CKD patients had an attenuated sBRS [CKD: -1.34 ± 0.59 versus CON: -2.91 ± 1.09 bursts (100 heartbeats)-1 mmHg-1; P = 0.001]. |sBRS| was significantly associated with eGFR (r = 0.69, P < 0.001). CKD patients had attenuated sympathetic-BP transduction compared to controls (0.75 ± 0.7 vs. 1.60 ± 0.8 mmHg; P = 0.010). Resting MSNA was negatively associated with sympathetic transduction (r = -0.57, P = 0.002). CKD patients exhibit impaired sBRS that may contribute to SNS overactivation and cardiovascular risk in this patient population. In addition, CKD patients had an attenuated sympathetic transduction that may counteract the vascular effects of SNS overactivation.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging the Gap: How Endothelial-Adipocyte Cx43 Mediated Gap Junctions Could Revolutionize Adiposity Regulation. 弥合缝隙:内皮细胞-脂肪细胞 Cx43 介导的缝隙连接如何彻底改变脂肪调节。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae046
Teresa Vezza, Víctor M Víctor
{"title":"Bridging the Gap: How Endothelial-Adipocyte Cx43 Mediated Gap Junctions Could Revolutionize Adiposity Regulation.","authors":"Teresa Vezza, Víctor M Víctor","doi":"10.1093/function/zqae046","DOIUrl":"10.1093/function/zqae046","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfonylurea Receptor Pharmacology Alters the Performance of Two Central Pattern Generating Circuits in Cancer borealis. 磺酰脲受体药理学改变了北巨蟹座两个中枢模式生成回路的性能。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae043
Sonal Kedia, Naziru M Awal, Jackie Seddon, Eve Marder

Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central pattern generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion and the cardiac ganglion (CG) control rhythmic contractions of the foregut and heart, respectively. Known SUR agonists and antagonists produce opposite effects in the two CPGs. Pyloric rhythm activity completely stops in the presence of a SUR agonist, and activity increases in SUR blockers. This results from a decrease in the excitability of pyloric dilator neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts in SUR agonists, and bursting slows in SUR antagonists. Analyses of the agonist-affected conductance properties present biophysical effects that do not trivially match those of mammalian SUR-dependent conductances. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.

神经元的活动和能量供应必须保持微妙的平衡,才能保证神经元的健康。两者之间的各种交流渠道会以不同方式影响网络输出。磺酰脲受体(SURs)是 ATP 结合盒蛋白(ABCs)的一种修饰,能使其相关的离子通道具有 ATP 依赖性门控。它们广泛表达,并将代谢状态与神经元活动直接联系起来。它们在不同回路中发挥的作用各不相同,在病理情况下既能使神经元爆发,也能抑制神经元的活动。巨蟹(Cancer borealis)的中枢模式发生器(CPG)几乎一直在有节奏地爆发,而能量供应如何影响这些网络尚不清楚。幽门胃神经节(STG)和心脏神经节(GC)网络分别控制着前肠和心脏的节律性收缩。已知的 SUR 激动剂和拮抗剂会在这两个中央神经节产生相反的效果。幽门节律活动在 SUR 激动剂的作用下完全停止,而在 SUR 阻断剂的作用下活动增加。这是因为幽门扩张器(PD)神经元的兴奋性降低,而这些神经元是起搏器内核的一部分。矛盾的是,CG 的神经元在 SUR 激动剂作用下会增加爆发性发射,而在 SUR 拮抗剂作用下爆发性发射会减慢。对受激动剂影响的电导特性的分析表明,这些生物物理效应与哺乳动物的 SUR 依赖性电导并不完全一致。我们认为,SUR 相关电导允许不同的神经元通过一种共同的机制以不同的方式对能量状态做出反应。
{"title":"Sulfonylurea Receptor Pharmacology Alters the Performance of Two Central Pattern Generating Circuits in Cancer borealis.","authors":"Sonal Kedia, Naziru M Awal, Jackie Seddon, Eve Marder","doi":"10.1093/function/zqae043","DOIUrl":"10.1093/function/zqae043","url":null,"abstract":"<p><p>Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central pattern generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion and the cardiac ganglion (CG) control rhythmic contractions of the foregut and heart, respectively. Known SUR agonists and antagonists produce opposite effects in the two CPGs. Pyloric rhythm activity completely stops in the presence of a SUR agonist, and activity increases in SUR blockers. This results from a decrease in the excitability of pyloric dilator neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts in SUR agonists, and bursting slows in SUR antagonists. Analyses of the agonist-affected conductance properties present biophysical effects that do not trivially match those of mammalian SUR-dependent conductances. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice. 小鼠骨骼肌内在功能和收缩刺激的葡萄糖摄取量不随时间而变化
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae035
Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk

A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.

越来越多的数据表明,骨骼肌的收缩功能和葡萄糖代谢随时间的变化而变化,而时间生物学对骨骼肌内在特性的影响被认为是潜在的媒介。然而,还没有研究直接调查骨骼肌在 24 小时昼夜周期内的内在收缩功能或葡萄糖代谢。为了解决这个问题,我们评估了小鼠离体伸肌和比目鱼肌在一天中四个时间段(昼夜节律时间 1、7、13、19)的内在收缩功能和耐力,以及收缩刺激的葡萄糖摄取。值得注意的是,虽然两块肌肉的基因表达都表现出与昼夜节律相关的变化,但在内在收缩功能、耐力和收缩刺激的葡萄糖摄取量方面,四个时间点之间没有差异,与性别无关。总之,这些结果表明,运动表现的日时变化和运动的降糖益处并不是由于时间生物学对肌肉内在功能或收缩刺激葡萄糖摄取的影响。
{"title":"Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice.","authors":"Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk","doi":"10.1093/function/zqae035","DOIUrl":"10.1093/function/zqae035","url":null,"abstract":"<p><p>A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Circadian Changes in Muscle Physiology: Methodological Considerations. 探索肌肉生理学的昼夜节律变化:方法论方面的考虑。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae038
Mark R Viggars, Karyn A Esser
{"title":"Exploring Circadian Changes in Muscle Physiology: Methodological Considerations.","authors":"Mark R Viggars, Karyn A Esser","doi":"10.1093/function/zqae038","DOIUrl":"10.1093/function/zqae038","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Kv1.2 Redox-Sensitive Gating by the Transmembrane Lectin LMAN2. 跨膜凝集素 LMAN2 对 Kv1.2 氧化还原敏感门控的调控
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae041
Shawn M Lamothe, Damayantee Das, Anson A Wong, Yubin Hao, Aislinn D Maguire, Bradley J Kerr, Victoria A Baronas, Harley T Kurata

Voltage gated potassium (Kv)1.2 channels influence excitability and action potential propagation in the nervous system. Unlike closely related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.

Kv1.2 钾通道影响神经系统的兴奋性和动作电位传播。与密切相关的 Kv1 通道不同,Kv1.2 的门控表现出高度可变的电压依赖性,这归因于不明外在因素的调节。Kv1.2 门控的可变性受到细胞外氧化还原电位的强烈影响,我们证明背根神经节感觉神经元中的 Kv1.2 电流表现出类似的可变性和氧化还原敏感性,这与在细胞系中异源表达该通道时观察到的情况相似。我们采用功能筛选方法,利用膜片钳电生理学测试候选调控蛋白对 Kv1.2 门控的影响。在测试的 52 个候选基因中,我们观察到与跨膜凝集素 LMAN2 共同表达会导致 CHO 和 L(tk-) 细胞系中的 Kv1.2 激活向去极化电压发生明显的门控转移,并伴随着激活动力学的减速。LMAN2 的过表达促进了 Kv1.2 的缓慢门控模式,这种模式模拟了细胞外还原条件的功能结果,并增强了对细胞外还原剂的敏感性。相反,在细胞系中以 shRNA 为介导敲除内源性 LMAN2 会降低 Kv1.2 的氧化还原敏感性和门控可变性。细胞内 S2-S3 连接器中相邻残基 F251 和 T252 的突变可消除 Kv1.2 对 LMAN2 的敏感性,这些突变也可消除氧化还原依赖性门控变化,这表明 LMAN2 与氧化还原对 Kv1.2 调节的影响途径相同。总之,我们发现 LMAN2 是影响 Kv1.2 氧化还原依赖性调控的候选调控蛋白,并阐明了敏感性所需的通道结构元素。
{"title":"Regulation of Kv1.2 Redox-Sensitive Gating by the Transmembrane Lectin LMAN2.","authors":"Shawn M Lamothe, Damayantee Das, Anson A Wong, Yubin Hao, Aislinn D Maguire, Bradley J Kerr, Victoria A Baronas, Harley T Kurata","doi":"10.1093/function/zqae041","DOIUrl":"10.1093/function/zqae041","url":null,"abstract":"<p><p>Voltage gated potassium (Kv)1.2 channels influence excitability and action potential propagation in the nervous system. Unlike closely related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malaria and Hypertension: What Is the Direction of Association? 疟疾与高血压:关联的方向是什么?
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae037
Aparna Tiwari, Auley De, Abhinav Sinha
{"title":"Malaria and Hypertension: What Is the Direction of Association?","authors":"Aparna Tiwari, Auley De, Abhinav Sinha","doi":"10.1093/function/zqae037","DOIUrl":"10.1093/function/zqae037","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries. 骨骼肌介导的血管张力抗收缩反应:揭示股动脉的乳酸-AMPK-NOS1 通路
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-20 DOI: 10.1093/function/zqae042
Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau

The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl l-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.

血管周围组织对血管张力的调节是各种旁分泌因子复杂相互作用的结果。在此,我们研究了股动脉和颈动脉周围骨骼肌的抗收缩效应及其内在机制。我们使用雄性和雌性 Wistar 大鼠证明了血清素、苯肾上腺素和 U-46619 在股动脉环中诱导的浓度依赖性血管收缩反应。有趣的是,这种反应在周围有股骨骼肌存在的情况下会减弱,与性别无关。当颈动脉暴露于其周围的骨骼肌时,未观察到抗收缩效应。即使在没有内皮和肌肉与动脉分离的情况下,在股动脉中观察到的效应仍然存在。此外,股动脉周围的骨骼肌还能促进其他三个血管床(基底动脉、肠系膜动脉和颈动脉)的抗收缩效应。我们使用乳酸脱氢酶抑制剂和 1/4 单羧酸盐转运体抑制剂证实了乳酸的参与,因为这两种抑制剂都能消除抗收缩效应。然而,乳酸盐并不直接促进血管扩张,而是通过激活骨骼肌中的 5' AMP 激活蛋白激酶(AMPK)和神经元一氧化氮合酶(NOS1)来发挥其作用。因此,NOS1 的特异性抑制剂 Nω-丙基 L-精氨酸阻止了抗收缩效应,也阻止了乳酸诱导的原发性骨骼肌细胞中 NOS1 在刺激性丝氨酸位点(1417)的磷酸化。在有选择性 AMPK 抑制剂 Bay-3827 存在的情况下,NOS1 的磷酸化会减少。总之,股动脉相关骨骼肌是一个强有力的旁分泌和内分泌器官,对两性血管张力都有影响。从机理上讲,抗收缩效应涉及肌肉纤维类型和/或其解剖位置,但与动脉类型或其相关血管内皮无关。最后,股动脉的抗收缩效应是由乳酸-AMPK-磷酸-NOS1Ser1417-NO 信号轴介导的。
{"title":"A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.","authors":"Milene T Fontes, Tiago J Costa, Ricardo B de Paula, Fênix A Araújo, Paula R Barros, Paul Townsend, Landon Butler, Kandy T Velazquez, Fiona Hollis, Gisele F Bomfim, Joshua T Butcher, Cameron G McCarthy, Camilla F Wenceslau","doi":"10.1093/function/zqae042","DOIUrl":"10.1093/function/zqae042","url":null,"abstract":"<p><p>The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar, mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did not directly promote vasodilation; rather, it exerted its effect by activating 5' AMP-activated protein kinase (AMPK) and neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nω-propyl l-arginine, a specific inhibitor of NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS1Ser1417-NO signaling axis.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Function (Oxford, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1