BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY BMB Reports Pub Date : 2024-05-01
Seobin Kim, Eun-Woo Lee, Doo-Byoung Oh, Jinho Seo
{"title":"BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway.","authors":"Seobin Kim, Eun-Woo Lee, Doo-Byoung Oh, Jinho Seo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1- associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine. [BMB Reports 2024; 57(5): 250-255].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1- associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine. [BMB Reports 2024; 57(5): 250-255].

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BAP1通过抑制ERK信号通路控制间充质干细胞迁移。
间充质干细胞(MSCs)由于其干细胞样特性和免疫抑制特性在再生医学中具有显著的潜力。通过促进骨髓间充质干细胞迁移来提高骨髓间充质干细胞治疗的疗效已经付出了很多努力。在这项研究中,我们发现去泛素酶brca1相关蛋白1 (BAP1)是MSC迁移的抑制剂。基于体外伤口愈合实验,使用去泛素酶siRNA文库筛选,我们发现沉默BAP1可显著增强MSC迁移。相反,BAP1过表达降低了MSCs的迁移和侵袭能力。MSCs中BAP1缺失上调ERK磷酸化,从而增加迁移因子骨桥蛋白的表达。进一步研究发现,BAP1与磷酸化的ERK1/2相互作用,使其泛素化,从而减弱ERK信号通路。总的来说,我们的研究强调了BAP1通过其去泛素酶活性在调节MSC迁移中的关键作用,并提出了一种新的方法来提高MSC在再生医学中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
期刊最新文献
DNA regulatory element cooperation and competition in transcription. Antisense-mediated splicing correction as a therapeutic approach for p53 K120R mutation. Cereblon regulates the production of hepatic fibroblast growth factor 23 in diabetes. Differential roles of N- and C-terminal LIR motifs in the catalytic activity and membrane targeting of RavZ and ATG4B proteins. Specialized pro-resolving mediator 7S MaR1 inhibits IL-6 expression via modulating ROS/p38/ERK/NF-κB pathways in PM10-exposed keratinocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1