Jin Sun Choi, Ji-Young Kim, Min-Joo Ahn, Seungtaek Song, Doyoun Kim, Sung Hoon Choi, Ye-Soo Park, Tae-Jong Kim, Sungsin Jo, Tae-Hwan Kim, Seung Cheol Shim
Spondyloarthritis (SpA) is a chronic inflammatory disease that leads to ankylosis of the axial skeleton. Celecoxib (cyclooxygenase-2 inhibitor, COX-2i) inhibited radiographic progression in a clinical study of SpA, but in the following study, diclofenac (COX-2 non-selective) failed to show that inhibition. Our study aimed to investigate whether nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited bone progression in SpA, and whether celecoxib had a unique function (independent of the COX-inhibitor), compared with the other NSAIDs. We investigated the efficacy of various NSAIDs in curdlan-injected SKG mice (SKGc), an animal model of SpA, analyzed by bone micro-CT and immunohistochemistry. We also tested the effect of NSAIDs on osteoblast (OB) differentiation and bone mineralization in primary bone-derived cells (BdCs) from mice, and in ankylosing spondylitis (AS) patients and human osteosarcoma cell line (SaOS2). Celecoxib significantly inhibited clinical arthritis and bone progression in the joints of SKGc, but not etoricoxib (another COX-2i), nor naproxen (COX-2 nonselective). Both DM-celecoxib, not inhibiting COX-2, and celecoxib, inhibited OB differentiation and bone mineralization in the BdCs of mice and AS patients, and in SaOS2, but etoricoxib or naproxen did not. The in silico study indicated that celecoxib and 2,5-dimethyl-celecoxib (DM-celecoxib) would bind to cadherin-11 (CDH11) with higher affinity than etoricoxib and naproxen. Celecoxib suppressed CDH11-mediated β-catenin signaling in the joints of SKGc, primary mice cells, and SaOS2 cells. Of the NSAIDs, only celecoxib inhibited bone progression in SKGc and OB differentiation and bone mineralization in the BdCs of mice and AS patients via CDH11/WNT signaling, independent of the COX-2 inhibition.
{"title":"Celecoxib is the only nonsteroidal anti-inflammatory drug to inhibit bone progression in spondyloarthritis.","authors":"Jin Sun Choi, Ji-Young Kim, Min-Joo Ahn, Seungtaek Song, Doyoun Kim, Sung Hoon Choi, Ye-Soo Park, Tae-Jong Kim, Sungsin Jo, Tae-Hwan Kim, Seung Cheol Shim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Spondyloarthritis (SpA) is a chronic inflammatory disease that leads to ankylosis of the axial skeleton. Celecoxib (cyclooxygenase-2 inhibitor, COX-2i) inhibited radiographic progression in a clinical study of SpA, but in the following study, diclofenac (COX-2 non-selective) failed to show that inhibition. Our study aimed to investigate whether nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited bone progression in SpA, and whether celecoxib had a unique function (independent of the COX-inhibitor), compared with the other NSAIDs. We investigated the efficacy of various NSAIDs in curdlan-injected SKG mice (SKGc), an animal model of SpA, analyzed by bone micro-CT and immunohistochemistry. We also tested the effect of NSAIDs on osteoblast (OB) differentiation and bone mineralization in primary bone-derived cells (BdCs) from mice, and in ankylosing spondylitis (AS) patients and human osteosarcoma cell line (SaOS2). Celecoxib significantly inhibited clinical arthritis and bone progression in the joints of SKGc, but not etoricoxib (another COX-2i), nor naproxen (COX-2 nonselective). Both DM-celecoxib, not inhibiting COX-2, and celecoxib, inhibited OB differentiation and bone mineralization in the BdCs of mice and AS patients, and in SaOS2, but etoricoxib or naproxen did not. The in silico study indicated that celecoxib and 2,5-dimethyl-celecoxib (DM-celecoxib) would bind to cadherin-11 (CDH11) with higher affinity than etoricoxib and naproxen. Celecoxib suppressed CDH11-mediated β-catenin signaling in the joints of SKGc, primary mice cells, and SaOS2 cells. Of the NSAIDs, only celecoxib inhibited bone progression in SKGc and OB differentiation and bone mineralization in the BdCs of mice and AS patients via CDH11/WNT signaling, independent of the COX-2 inhibition.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinyoung Kim, Barsha Deshar, Min Hwang, Chandani Shrestha, Eunhye Ju, Bum-Ho Bin, Jiyoon Kim
Atopic dermatitis (AD) is a chronic, pruritic skin disease characterized by inflammation and skin lesion cornification. While the use of corticosteroids like dexamethasone (DXM), an antiinflammatory drug, improves symptoms temporarily and quickly, this use is not a cure. Thus, we aimed to identify a new therapeutic strategy for AD using quantum molecular resonance (QMR), a novel non-invasive technique with an electromagnetic field-based therapeutic approach as an alternative to pain killers. An AD mouse model presenting AD-like skin lesions was generated by treating BALB/c mice with dinitrochlorobenzene (DNCB), and then DNCB-induced AD mice were administered DXM or QMR, and the change of AD-like skin lesions was observed. QMR ameliorated AD-like skin lesions in DNCB-induced AD mice and reduced the numbers of infiltrated mast cells and macrophages in mouse skin. QMR also alleviated thickening of the epidermis and restored integrity of the epidermal basement membrane. Several genes regulated by DNCB and counterregulated by QMR were identified through transcriptome analysis in mouse skin, and RNA silencing experiments on these genes in TNF-α/IFN-γ- or DNCB-treated human keratinocytes revealed that IL36G and SPRR2B play important roles in inflammation and keratinization. The expression of IL36G and SPRR2B was significantly reduced by QMR in skin of DNCB-induced AD mice. These results underscore the promising role of QMR in ameliorating AD characterized by inflammation and skin lesion hyperkeratosis via targeting IL36G and SPRR2B.
特应性皮炎(AD)是一种以炎症和皮损粟粒化为特征的慢性瘙痒性皮肤病。虽然使用地塞米松(DXM)等皮质类固醇激素(一种抗炎药物)可以暂时、快速地改善症状,但并不能根治。因此,我们的目标是利用量子分子共振(QMR)找到一种新的AD治疗策略。QMR是一种新型的非侵入性技术,以电磁场为基础的治疗方法可替代止痛药。通过用二硝基氯苯(DNCB)处理 BALB/c 小鼠,建立了出现 AD 样皮损的 AD 小鼠模型,然后给二硝基氯苯诱导的 AD 小鼠注射 DXM 或 QMR,观察 AD 样皮损的变化。QMR能改善DNCB诱导的AD小鼠的AD样皮损,减少小鼠皮肤中浸润的肥大细胞和巨噬细胞的数量。QMR 还能减轻表皮增厚,恢复表皮基底膜的完整性。通过对小鼠皮肤进行转录组分析,发现了几个受 DNCB 调控和受 QMR 反调控的基因,在 TNF-α/IFN-γ 或 DNCB 处理的人类角质形成细胞中对这些基因进行 RNA 沉默实验,发现 IL36G 和 SPRR2B 在炎症和角质形成中发挥重要作用。在 DNCB 诱导的 AD 小鼠皮肤中,QMR 能显著降低 IL36G 和 SPRR2B 的表达。这些结果强调了 QMR 在通过靶向 IL36G 和 SPRR2B 改善以炎症和皮损角化过度为特征的 AD 方面的作用。
{"title":"Quantum molecular resonance ameliorates atopic dermatitis through suppression of IL36G and SPRR2B.","authors":"Jinyoung Kim, Barsha Deshar, Min Hwang, Chandani Shrestha, Eunhye Ju, Bum-Ho Bin, Jiyoon Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a chronic, pruritic skin disease characterized by inflammation and skin lesion cornification. While the use of corticosteroids like dexamethasone (DXM), an antiinflammatory drug, improves symptoms temporarily and quickly, this use is not a cure. Thus, we aimed to identify a new therapeutic strategy for AD using quantum molecular resonance (QMR), a novel non-invasive technique with an electromagnetic field-based therapeutic approach as an alternative to pain killers. An AD mouse model presenting AD-like skin lesions was generated by treating BALB/c mice with dinitrochlorobenzene (DNCB), and then DNCB-induced AD mice were administered DXM or QMR, and the change of AD-like skin lesions was observed. QMR ameliorated AD-like skin lesions in DNCB-induced AD mice and reduced the numbers of infiltrated mast cells and macrophages in mouse skin. QMR also alleviated thickening of the epidermis and restored integrity of the epidermal basement membrane. Several genes regulated by DNCB and counterregulated by QMR were identified through transcriptome analysis in mouse skin, and RNA silencing experiments on these genes in TNF-α/IFN-γ- or DNCB-treated human keratinocytes revealed that IL36G and SPRR2B play important roles in inflammation and keratinization. The expression of IL36G and SPRR2B was significantly reduced by QMR in skin of DNCB-induced AD mice. These results underscore the promising role of QMR in ameliorating AD characterized by inflammation and skin lesion hyperkeratosis via targeting IL36G and SPRR2B.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) and its progressive form, Metabolic Dysfunction Associated Steatohepatitis (MASH), represent significant health concerns associated with the metabolic syndrome. These conditions are characterized by excessive hepatic fat accumulation, inflammation, and potential progression to cirrhosis and hepatocellular carcinoma. Neutrophils are innate immune cells that play a pivotal role in the development of MASLD and MASH. They can infiltrate the hepatic microenvironment in response to inflammatory cytokines and damage associated molecular patterns (DAMPs) derived from the liver and exacerbate tissue damage by releasing of reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps (NETs). Moreover, neutrophils can disrupt the metabolism of hepatocytes through key factors such as neutrophil elastase (NE) and human neutrophil peptides-1 (HNP-1), leading to inflammation and fibrosis, while myeloperoxidase (MPO) and lipocalin (LCN2) are involved in inflammatory and fibrotic processes. In contrast, neutrophils contribute to liver protection and repair through mechanisms involving microRNA-223 and matrix metalloproteinase 9 (MMP9). This dual role of neutrophils highlights their significance in the pathogenesis of MASLD and MASH. This review summarizes current understanding from recent studies on the involvement of neutrophils in MASLD and MASH. Understanding complex roles of neutrophils within the liver's unique microenvironment offers insights into novel therapeutic strategies, emphasizing the need for further research to explore neutrophil-targeted interventions for managing MASLD and MASH.
{"title":"Neutrophils in MASLD and MASH.","authors":"Sanjeeb Shrestha, Jae-Han Jeon, Chang-Won Hong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) and its progressive form, Metabolic Dysfunction Associated Steatohepatitis (MASH), represent significant health concerns associated with the metabolic syndrome. These conditions are characterized by excessive hepatic fat accumulation, inflammation, and potential progression to cirrhosis and hepatocellular carcinoma. Neutrophils are innate immune cells that play a pivotal role in the development of MASLD and MASH. They can infiltrate the hepatic microenvironment in response to inflammatory cytokines and damage associated molecular patterns (DAMPs) derived from the liver and exacerbate tissue damage by releasing of reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps (NETs). Moreover, neutrophils can disrupt the metabolism of hepatocytes through key factors such as neutrophil elastase (NE) and human neutrophil peptides-1 (HNP-1), leading to inflammation and fibrosis, while myeloperoxidase (MPO) and lipocalin (LCN2) are involved in inflammatory and fibrotic processes. In contrast, neutrophils contribute to liver protection and repair through mechanisms involving microRNA-223 and matrix metalloproteinase 9 (MMP9). This dual role of neutrophils highlights their significance in the pathogenesis of MASLD and MASH. This review summarizes current understanding from recent studies on the involvement of neutrophils in MASLD and MASH. Understanding complex roles of neutrophils within the liver's unique microenvironment offers insights into novel therapeutic strategies, emphasizing the need for further research to explore neutrophil-targeted interventions for managing MASLD and MASH.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SukHwan Yun, Joo Won Kim, Min Jeong Park, Eyun Song, Soo Yeon Jang, Ahreum Jang, Kyung Mook Choi, Sei Hyun Baik, Hwan-Jin Hwang, Hye Jin Yoo
G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes. AM1638 treatment increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and expression levels of the antioxidant molecules heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO1). Palmitate-mediated superoxide production and levels of 4-hydroxynonenal, a biomarker of oxidative stress, decreased after treatment with AM1638. Notably, palmitate-mediated disruption of mitochondrial membrane potential, lower levels of mitochondrial complex protein, and failure of adenosine triphosphate production were all recovered by treatment with AM1638. Moreover, AM1638 blocked palmitate-mediated caspase-3 cleavage and nuclear fragmentation, thereby improving cell viability. However, these AM1638-mediated beneficial effects were abrogated by treatment with Compound C, an AMPK inhibitor. These results demonstrate that AM1638, a GPR40-full agonist, ameliorates palmitate-mediated oxidative stress in H9c2 cells in an AMPK-dependent manner.
{"title":"GPR40-full agonist AM1638 alleviates palmitate-induced oxidative damage in H9c2 cells via an AMPK-dependent pathway.","authors":"SukHwan Yun, Joo Won Kim, Min Jeong Park, Eyun Song, Soo Yeon Jang, Ahreum Jang, Kyung Mook Choi, Sei Hyun Baik, Hwan-Jin Hwang, Hye Jin Yoo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes. AM1638 treatment increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and expression levels of the antioxidant molecules heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase-1 (NQO1). Palmitate-mediated superoxide production and levels of 4-hydroxynonenal, a biomarker of oxidative stress, decreased after treatment with AM1638. Notably, palmitate-mediated disruption of mitochondrial membrane potential, lower levels of mitochondrial complex protein, and failure of adenosine triphosphate production were all recovered by treatment with AM1638. Moreover, AM1638 blocked palmitate-mediated caspase-3 cleavage and nuclear fragmentation, thereby improving cell viability. However, these AM1638-mediated beneficial effects were abrogated by treatment with Compound C, an AMPK inhibitor. These results demonstrate that AM1638, a GPR40-full agonist, ameliorates palmitate-mediated oxidative stress in H9c2 cells in an AMPK-dependent manner.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyoung Lee, Dayoung Kim, Sun Joo Cha, Jang-Won Lee, Eun-Young Lee, Hyung-Jun Kim, Kiyoung Kim
Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model. We found that knockdown of Drosophila Tau in nephrocytes resulted in apoptotic cell death and the disruption of nephrocyte structure. Furthermore, we observed that decreased Tau levels induced genomic damage and abnormal distribution of γ-H2Av, altering nuclei architecture in nephrocytes, and affecting the nuclear membrane structure by interfering with lamin with aging. Additionally, Tau knockdown led to a reduction in lipid droplets in Drosophila fat body tissues, suggesting a potential role of Tau in inter-organ communication. These findings underscore the importance of Tau in the nephrocytes of Drosophila, and advocate further research to broaden our understanding of podocyte biology in kidney diseases.
Tau 是一种微管相关蛋白,因其在神经退行性疾病中的重要作用而闻名。虽然各种分子和免疫组化技术已证实荚膜细胞中存在 Tau,但其在这些细胞中的确切功能仍然难以捉摸。在本研究中,我们以果蝇心包肾细胞为模型,研究了 Tau 在肾脏荚膜细胞中的作用。我们发现,敲除果蝇肾小球中的 Tau 会导致细胞凋亡和肾小球结构的破坏。此外,我们还观察到,Tau水平降低会诱导基因组损伤和γ-H2Av的异常分布,改变肾细胞核的结构,并通过干扰老化的片层而影响核膜结构。此外,Tau基因敲除导致果蝇脂肪体组织中的脂滴减少,这表明Tau在器官间通信中的潜在作用。这些发现强调了Tau在果蝇肾细胞中的重要性,并主张进一步开展研究,以拓宽我们对肾脏疾病中荚膜细胞生物学的认识。
{"title":"Tau reduction impairs nephrocyte function in Drosophila.","authors":"Jiyoung Lee, Dayoung Kim, Sun Joo Cha, Jang-Won Lee, Eun-Young Lee, Hyung-Jun Kim, Kiyoung Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model. We found that knockdown of Drosophila Tau in nephrocytes resulted in apoptotic cell death and the disruption of nephrocyte structure. Furthermore, we observed that decreased Tau levels induced genomic damage and abnormal distribution of γ-H2Av, altering nuclei architecture in nephrocytes, and affecting the nuclear membrane structure by interfering with lamin with aging. Additionally, Tau knockdown led to a reduction in lipid droplets in Drosophila fat body tissues, suggesting a potential role of Tau in inter-organ communication. These findings underscore the importance of Tau in the nephrocytes of Drosophila, and advocate further research to broaden our understanding of podocyte biology in kidney diseases.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR/Cas systems have emerged as powerful tools for gene editing, nucleic acid detection, and therapeutic applications. Recent advances in single-molecule techniques have provided new insights into the DNA-targeting mechanisms of CRISPR/ Cas systems, in particular, Types I, II, and V. Here, we review how single-molecule approaches have expanded our understanding of key processes, namely target search, recognition, and cleavage. Furthermore, we focus on the dynamic behavior of Cas proteins, including PAM site recognition and R-loop formation, which are crucial to ensure specificity and efficiency in gene editing. Additionally, we discuss the conformational changes and interactions that drive precise DNA cleavage by different Cas proteins. This mini review provides a comprehensive overview of CRISPR/Cas molecular dynamics, offering conclusive insights into their broader potential for genome editing and biotechnological applications. [BMB Reports 2024; 58(1): 8-16].
{"title":"Single-molecule perspectives of CRISPR/Cas systems: target search, recognition, and cleavage.","authors":"Jeongmin Lee, Cherlhyun Jeong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>CRISPR/Cas systems have emerged as powerful tools for gene editing, nucleic acid detection, and therapeutic applications. Recent advances in single-molecule techniques have provided new insights into the DNA-targeting mechanisms of CRISPR/ Cas systems, in particular, Types I, II, and V. Here, we review how single-molecule approaches have expanded our understanding of key processes, namely target search, recognition, and cleavage. Furthermore, we focus on the dynamic behavior of Cas proteins, including PAM site recognition and R-loop formation, which are crucial to ensure specificity and efficiency in gene editing. Additionally, we discuss the conformational changes and interactions that drive precise DNA cleavage by different Cas proteins. This mini review provides a comprehensive overview of CRISPR/Cas molecular dynamics, offering conclusive insights into their broader potential for genome editing and biotechnological applications. [BMB Reports 2024; 58(1): 8-16].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"8-16"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2024; 58(1): 24-32].
核小体是染色体纤维的基本结构单元。DNA 缠绕在组蛋白八聚体上形成核小体,而相邻的核小体相互作用形成高阶结构,并将千兆长的 DNA 装入细胞核的小体积中。核小体阻断转录因子进入基因组区域,对基因表达进行调控。生化和物理线索刺激核小体和核小体阵列的包裹-解包裹和凝结-解凝结动态。核小体动力学和染色质纤维组织受细胞核内离子背景变化、组蛋白翻译后修饰以及 DNA 序列特征(如组蛋白结合基序和核小体间距)的影响。生化和生物物理测量以及硅学模拟已被广泛用于研究染色质动力学的调控效应。特别是,单分子测量揭示了核小体和染色质动力学的新机理细节。这篇微型综述阐明了这些方法在染色质动力学方面的最新发现。
{"title":"Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements.","authors":"Sihyeong Nho, Hajin Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2024; 58(1): 24-32].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"24-32"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-molecule techniques allow researchers to investigate individual molecules and obtain unprecedented details of the heterogeneous nature of biological entities. They play instrumental roles in studying DNA-protein interactions due to the ability to visualize DNA or proteins and to manipulate individual DNA molecules by applying force or torque. Here, we describe single-molecule DNA-flow stretching assays as hybrid tools that combine forces with fluorescence. We also review how widely these assays are utilized in elucidating working mechanisms of DNA-binding proteins. Additionally, we provide a brief explanation of various efforts to prepare DNA substrates with desired internal protein-binding sequences. More complicated needs for DNA-protein interaction research have led to improvements in single-molecule DNA flow-stretching techniques. Several DNA flow-stretching variants such as DNA curtain, DNA motion capture assays, and protein-induced fluorescence enhancement (PIFE) are introduced in this mini review. Singlemolecule DNA flow-stretching assays will keep contributing to our understanding of how DNA-binding proteins function due to their multiplexed, versatile, and robust capabilities. [BMB Reports 2024; 58(1): 41-51].
{"title":"Single-molecule DNA-flow stretching assay as a versatile hybrid tool for investigating DNA-protein interactions.","authors":"Sadaf Shehzad, HyeongJun Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Single-molecule techniques allow researchers to investigate individual molecules and obtain unprecedented details of the heterogeneous nature of biological entities. They play instrumental roles in studying DNA-protein interactions due to the ability to visualize DNA or proteins and to manipulate individual DNA molecules by applying force or torque. Here, we describe single-molecule DNA-flow stretching assays as hybrid tools that combine forces with fluorescence. We also review how widely these assays are utilized in elucidating working mechanisms of DNA-binding proteins. Additionally, we provide a brief explanation of various efforts to prepare DNA substrates with desired internal protein-binding sequences. More complicated needs for DNA-protein interaction research have led to improvements in single-molecule DNA flow-stretching techniques. Several DNA flow-stretching variants such as DNA curtain, DNA motion capture assays, and protein-induced fluorescence enhancement (PIFE) are introduced in this mini review. Singlemolecule DNA flow-stretching assays will keep contributing to our understanding of how DNA-binding proteins function due to their multiplexed, versatile, and robust capabilities. [BMB Reports 2024; 58(1): 41-51].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"41-51"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy. We highlight recent advancements, including innovations in force spectroscopy and single-molecule imaging using free-standing lipid bilayers, and the development of membrane platforms with tunable composition and curvature for improving fluorescence-based studies of protein dynamics. These integrated approaches have provided deep insights into ion channel function, membrane fusion, protein mechanics, and protein dynamics. We highlight how the synergy between single-molecule techniques and model membranes enhances our understanding of complex cellular processes, paving the way for future discoveries in membrane biology and biophysics. [BMB Reports 2024; 58(1): 33-40].
{"title":"Advancing membrane biology: single-molecule approaches meet model membrane systems.","authors":"Jaehyeon Shin, Sang Hyeok Jeong, Min Ju Shon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy. We highlight recent advancements, including innovations in force spectroscopy and single-molecule imaging using free-standing lipid bilayers, and the development of membrane platforms with tunable composition and curvature for improving fluorescence-based studies of protein dynamics. These integrated approaches have provided deep insights into ion channel function, membrane fusion, protein mechanics, and protein dynamics. We highlight how the synergy between single-molecule techniques and model membranes enhances our understanding of complex cellular processes, paving the way for future discoveries in membrane biology and biophysics. [BMB Reports 2024; 58(1): 33-40].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"33-40"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryo-fixation techniques, including cryo-electron and cryofluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-tonoise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field. [BMB Reports 2024; 58(1): 2-7].
{"title":"Cryogenic single-molecule fluorescence imaging.","authors":"Phil Sang Yu, Chae Un Kim, Jong-Bong Lee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Cryo-fixation techniques, including cryo-electron and cryofluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-tonoise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field. [BMB Reports 2024; 58(1): 2-7].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"2-7"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}