{"title":"Saccharomyces cerevisiae survival against heat stress entails a communication between CCT and cell wall integrity pathway.","authors":"Ankita Dube, Dileep Pullepu, M Anaul Kabir","doi":"10.1007/s42977-023-00192-1","DOIUrl":null,"url":null,"abstract":"<p><p>The chaperonin TRiC/CCT is cytosolic cylindrical complex of 16 subunits encoded by eight essential genes CCT1-8. It contributes to folding 10% of cellular polypeptides in yeast. The strain carrying substitution point mutation G412E in the equatorial domain of Cct7p resulted in the improper folding of substrates. In this study, the Cct7p mutant exhibited sensitivity to non-optimal growth temperatures and cell wall stressors. Heat shock is known to disrupt cell wall and protein stability in budding yeast. Mitogen-activated protein kinase-mediated cell wall integrity pathway gets activated to compensate the perturbed cell wall. Overexpression of the PKC1 and SLT2 genes of MAPK signaling pathway in mutant rescued the growth and cell division defects. Additionally, the genes of the CWI pathway such as SED1, GFA1, PIR1, and RIM21 are down-regulated. The Cct7p mutant strain (G412E) is unable to withstand the heat stress due to the underlying defects in protein folding and cell wall maintenance. Taken together, our results strongly indicate the interaction between CCT and cell wall integrity pathway.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"519-527"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-023-00192-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The chaperonin TRiC/CCT is cytosolic cylindrical complex of 16 subunits encoded by eight essential genes CCT1-8. It contributes to folding 10% of cellular polypeptides in yeast. The strain carrying substitution point mutation G412E in the equatorial domain of Cct7p resulted in the improper folding of substrates. In this study, the Cct7p mutant exhibited sensitivity to non-optimal growth temperatures and cell wall stressors. Heat shock is known to disrupt cell wall and protein stability in budding yeast. Mitogen-activated protein kinase-mediated cell wall integrity pathway gets activated to compensate the perturbed cell wall. Overexpression of the PKC1 and SLT2 genes of MAPK signaling pathway in mutant rescued the growth and cell division defects. Additionally, the genes of the CWI pathway such as SED1, GFA1, PIR1, and RIM21 are down-regulated. The Cct7p mutant strain (G412E) is unable to withstand the heat stress due to the underlying defects in protein folding and cell wall maintenance. Taken together, our results strongly indicate the interaction between CCT and cell wall integrity pathway.
Biologia futuraAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍:
How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica).
In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.