Combinatorial genetic strategies for dissecting cell lineages, cell types, and gene function in the mouse brain

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Development Growth & Differentiation Pub Date : 2023-11-14 DOI:10.1111/dgd.12902
Qi Zhang, Xue Liu, Ling Gong, Miao He
{"title":"Combinatorial genetic strategies for dissecting cell lineages, cell types, and gene function in the mouse brain","authors":"Qi Zhang,&nbsp;Xue Liu,&nbsp;Ling Gong,&nbsp;Miao He","doi":"10.1111/dgd.12902","DOIUrl":null,"url":null,"abstract":"<p>Research in neuroscience has greatly benefited from the development of genetic approaches that enable lineage tracing, cell type targeting, and conditional gene regulation. Recent advances in combinatorial strategies, which integrate multiple cellular features, have significantly enhanced the spatiotemporal precision and flexibility of these manipulations. In this minireview, we introduce the concept and design of these strategies and provide a few examples of their application in genetic fate mapping, cell type targeting, and reversible conditional gene regulation. These advancements have facilitated in-depth investigation into the developmental principles underlying the assembly of brain circuits, granting experimental access to highly specific cell lineages and subtypes, as well as offering valuable new tools for modeling and studying neurological diseases. Additionally, we discuss future directions aimed at expanding and improving the existing genetic toolkit for a better understanding of the development, structure, and function of healthy and diseased brains.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 9","pages":"546-553"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12902","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research in neuroscience has greatly benefited from the development of genetic approaches that enable lineage tracing, cell type targeting, and conditional gene regulation. Recent advances in combinatorial strategies, which integrate multiple cellular features, have significantly enhanced the spatiotemporal precision and flexibility of these manipulations. In this minireview, we introduce the concept and design of these strategies and provide a few examples of their application in genetic fate mapping, cell type targeting, and reversible conditional gene regulation. These advancements have facilitated in-depth investigation into the developmental principles underlying the assembly of brain circuits, granting experimental access to highly specific cell lineages and subtypes, as well as offering valuable new tools for modeling and studying neurological diseases. Additionally, we discuss future directions aimed at expanding and improving the existing genetic toolkit for a better understanding of the development, structure, and function of healthy and diseased brains.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在小鼠脑中解剖细胞系、细胞类型和基因功能的组合遗传策略。
神经科学的研究很大程度上得益于遗传方法的发展,这些方法使谱系追踪、细胞类型靶向和条件基因调控成为可能。结合多种细胞特征的组合策略的最新进展显著提高了这些操作的时空精度和灵活性。在这篇综述中,我们介绍了这些策略的概念和设计,并提供了它们在遗传命运定位、细胞类型靶向和可逆条件基因调控方面的应用实例。这些进步促进了对脑回路组装背后的发育原理的深入研究,为高度特异性的细胞谱系和亚型提供了实验途径,并为建模和研究神经系统疾病提供了有价值的新工具。此外,我们讨论了未来的方向,旨在扩大和改进现有的遗传工具,以更好地了解健康和患病大脑的发育、结构和功能。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
期刊最新文献
Quantitative in toto live imaging analysis of apical nuclear migration in the mouse telencephalic neuroepithelium. Labeling and sorting of avian primordial germ cells utilizing Lycopersicon Esculentum lectin. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Issue Information Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1