Previous studies have shown that tissue regeneration induces expression of genes that play important roles in regeneration. Recently, several studies have identified regeneration-response enhancers (RREs) that activate gene expression by tissue injury. Particularly, we showed that RREs contain two transcription factor-binding motifs: a bHLH transcription factor-binding motif, an E-box, and an AP-1/bZIP transcription factor-binding motif, a 12-O-Tetradecanoylphorbol 13-acetate response element (TRE). However, the triggers and subsequent signals generated by injury are still unclear. In this study, we analyzed RRE activation using various injury models. Although inter-ray incisions and skin exfoliation injuries did not activate RREs or regeneration genes, the fin puncture injury activated RREs and several regeneration-response genes. After fin puncture injury, msxc was activated only on the proximal side of the hole where blastema-like tissue was formed, whereas RREs, junbb, and fibronectin 1b (fn1b) were activated on both the proximal and distal sides, implying that activation of RREs, junbb, and fn1b is independent of blastema formation. Here, we also established a mild cryoinjury method. After this injury, transient vascular destruction, an increase in cell death, and an accumulation of myeloid cells were observed; however, no major morphological damage was observed. Importantly, msxc was not induced by cryoinjury, whereas fn1b, junbb, and 1.8 k RRE (-1.8 kb promoter of fn1b) were activated, suggesting that cryoinjury induces the responses of fn1b, junbb, and 1.8 k RRE without forming the blastema. Thus, our study shows that the cryoinjury model and the RRE transgenic (Tg) zebrafish may provide a useful platform for exploring injury signals.
{"title":"Mild cryoinjury in zebrafish fin induces regenerative response without blastema formation.","authors":"Takafumi Yoshida, Atsushi Kawakami","doi":"10.1111/dgd.12962","DOIUrl":"https://doi.org/10.1111/dgd.12962","url":null,"abstract":"<p><p>Previous studies have shown that tissue regeneration induces expression of genes that play important roles in regeneration. Recently, several studies have identified regeneration-response enhancers (RREs) that activate gene expression by tissue injury. Particularly, we showed that RREs contain two transcription factor-binding motifs: a bHLH transcription factor-binding motif, an E-box, and an AP-1/bZIP transcription factor-binding motif, a 12-O-Tetradecanoylphorbol 13-acetate response element (TRE). However, the triggers and subsequent signals generated by injury are still unclear. In this study, we analyzed RRE activation using various injury models. Although inter-ray incisions and skin exfoliation injuries did not activate RREs or regeneration genes, the fin puncture injury activated RREs and several regeneration-response genes. After fin puncture injury, msxc was activated only on the proximal side of the hole where blastema-like tissue was formed, whereas RREs, junbb, and fibronectin 1b (fn1b) were activated on both the proximal and distal sides, implying that activation of RREs, junbb, and fn1b is independent of blastema formation. Here, we also established a mild cryoinjury method. After this injury, transient vascular destruction, an increase in cell death, and an accumulation of myeloid cells were observed; however, no major morphological damage was observed. Importantly, msxc was not induced by cryoinjury, whereas fn1b, junbb, and 1.8 k RRE (-1.8 kb promoter of fn1b) were activated, suggesting that cryoinjury induces the responses of fn1b, junbb, and 1.8 k RRE without forming the blastema. Thus, our study shows that the cryoinjury model and the RRE transgenic (Tg) zebrafish may provide a useful platform for exploring injury signals.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina Lillesaar, William Norton, Daniel Liedtke, Sachiko Tsuda
The usefulness of zebrafish for understanding the human nervous system is exemplified by the articles in part 1. The virtual special issue part 2 not only covers more work using this well-established species, but also highlights that other fish species may serve as alternative or more appropriate models, due to unique biological or evolutionary characteristics, to explore genetic and molecular mechanisms of neurological and psychiatric disorders.
{"title":"Understanding disorders of the human nervous system: How fish models reveal disease mechanisms from single molecules to behavior (part 2)","authors":"Christina Lillesaar, William Norton, Daniel Liedtke, Sachiko Tsuda","doi":"10.1111/dgd.12951","DOIUrl":"10.1111/dgd.12951","url":null,"abstract":"<p>The usefulness of zebrafish for understanding the human nervous system is exemplified by the articles in part 1. The virtual special issue part 2 not only covers more work using this well-established species, but also highlights that other fish species may serve as alternative or more appropriate models, due to unique biological or evolutionary characteristics, to explore genetic and molecular mechanisms of neurological and psychiatric disorders.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"67 1","pages":"4-5"},"PeriodicalIF":1.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animals vary in their ability to replace body parts lost to injury, a phenomenon known as restorative regeneration. Uncovering conserved signaling steps required for regeneration may aid regenerative medicine. Reactive oxygen species (ROS) are necessary for proper regeneration in species across a wide range of taxa, but it is unknown whether ROS are essential for annelid regeneration. As annelids are a widely used and excellent model for regeneration, we sought to determine whether ROS play a role in the regeneration of the highly regenerative annelid, Lumbriculus variegatus. Using a ROS-sensitive fluorescent probe we observed ROS accumulation at the wound site within 15 min after amputation; this ROS burst lessened by 6 h post-amputation. Chemical inhibition of this ROS burst delayed regeneration, an impairment that was partially rescued with exogenous ROS. Our results suggest that similar to other animals, annelid regeneration depends upon ROS signaling, implying a phylogenetically ancient requirement for ROS in regeneration.
{"title":"Regeneration of Lumbriculus variegatus requires post-amputation production of reactive oxygen species.","authors":"Freya R Beinart, Kathy Gillen","doi":"10.1111/dgd.12961","DOIUrl":"https://doi.org/10.1111/dgd.12961","url":null,"abstract":"<p><p>Animals vary in their ability to replace body parts lost to injury, a phenomenon known as restorative regeneration. Uncovering conserved signaling steps required for regeneration may aid regenerative medicine. Reactive oxygen species (ROS) are necessary for proper regeneration in species across a wide range of taxa, but it is unknown whether ROS are essential for annelid regeneration. As annelids are a widely used and excellent model for regeneration, we sought to determine whether ROS play a role in the regeneration of the highly regenerative annelid, Lumbriculus variegatus. Using a ROS-sensitive fluorescent probe we observed ROS accumulation at the wound site within 15 min after amputation; this ROS burst lessened by 6 h post-amputation. Chemical inhibition of this ROS burst delayed regeneration, an impairment that was partially rescued with exogenous ROS. Our results suggest that similar to other animals, annelid regeneration depends upon ROS signaling, implying a phylogenetically ancient requirement for ROS in regeneration.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 16th Japanese Drosophila Research Conference (JDRC16) was held at the Sendai International Center from September 17 to 19 2024. It had been 2 years since the last JDRC15 held in Nagoya. The conference brought together 231 researchers, including 22 researchers from overseas, creating a vibrant and diverse platform for scientific exchange. Prof. Shigeo Hayashi of RIKEN BDR delivered a keynote lecture, and his groundbreaking ideas and research captivated the audience. Over the 3 days, the conference featured 53 oral presentations across 11 sessions and 2 special sessions, as well as 128 poster presentations, all of which fostered stimulating discussions and the exchange of innovative ideas. The reception provided an additional opportunity for researchers to engage in meaningful dialogue while enjoying Sendai's renowned specialties. Held under clear autumn skies in a great nature along the river, this conference painted a beautiful contrast to the heated discussions in the venue. Consequently, this conference fully contributed to the mission proffered by Prof. Hayashi, "Fly to New World," expanding the insights gained from flies into new and unexplored scientific areas.
{"title":"\"Fly to New World\": Meeting report of the 16th Japanese Drosophila research conference (JDRC16).","authors":"Haruka Yoshizawa, Erina Kuranaga","doi":"10.1111/dgd.12959","DOIUrl":"https://doi.org/10.1111/dgd.12959","url":null,"abstract":"<p><p>The 16th Japanese Drosophila Research Conference (JDRC16) was held at the Sendai International Center from September 17 to 19 2024. It had been 2 years since the last JDRC15 held in Nagoya. The conference brought together 231 researchers, including 22 researchers from overseas, creating a vibrant and diverse platform for scientific exchange. Prof. Shigeo Hayashi of RIKEN BDR delivered a keynote lecture, and his groundbreaking ideas and research captivated the audience. Over the 3 days, the conference featured 53 oral presentations across 11 sessions and 2 special sessions, as well as 128 poster presentations, all of which fostered stimulating discussions and the exchange of innovative ideas. The reception provided an additional opportunity for researchers to engage in meaningful dialogue while enjoying Sendai's renowned specialties. Held under clear autumn skies in a great nature along the river, this conference painted a beautiful contrast to the heated discussions in the venue. Consequently, this conference fully contributed to the mission proffered by Prof. Hayashi, \"Fly to New World,\" expanding the insights gained from flies into new and unexplored scientific areas.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube. We also established the floor plate differentiation protocol of the mouse embryonic stem cells, and analyzed the function of TMEM196 with this system. Mutating the Tmem196 gene does not alter cell division and overall differentiation remains unchanged within the neural cells. However, TMEM196 inhibits Wnt signaling, and Tmem196 mutant cells exhibit aberrant paraxial mesoderm differentiation, suggesting that TMEM196 selects the floor plate cell fate at the binary decision of the neuromesodermal cells. These findings highlight TMEM196 as a key regulator of both cell proliferation and floor plate determination, contributing to proper regionalization during embryogenesis.
{"title":"The transmembrane protein TMEM196 controls cell proliferation and determines the floor plate cell lineage.","authors":"Yumi Matsumoto, Seiichi Tamaru, Xing Chen, Takuma Shinozuka, Yuichi Sakumura, Noriaki Sasai","doi":"10.1111/dgd.12960","DOIUrl":"https://doi.org/10.1111/dgd.12960","url":null,"abstract":"<p><p>The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube. We also established the floor plate differentiation protocol of the mouse embryonic stem cells, and analyzed the function of TMEM196 with this system. Mutating the Tmem196 gene does not alter cell division and overall differentiation remains unchanged within the neural cells. However, TMEM196 inhibits Wnt signaling, and Tmem196 mutant cells exhibit aberrant paraxial mesoderm differentiation, suggesting that TMEM196 selects the floor plate cell fate at the binary decision of the neuromesodermal cells. These findings highlight TMEM196 as a key regulator of both cell proliferation and floor plate determination, contributing to proper regionalization during embryogenesis.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent molecular phylogenetic studies have raised two questions about the evolutionary history of the calcified exoskeleton of mollusks. The first question concerns the homology of the two types of skeleton: whether spicules and shell plates share an evolutionary origin. The second question is the homology of the shell plates between chitons and other mollusks, including gastropods and bivalves. To gain insight into these questions, we examined the early development of shell plates and spicules in chitons. We identified several developmental genes that are involved in both shell plates and spicules, suggesting that spicules and shell plates share a common evolutionary origin. We also found that subpopulations of the dorsal shell field (the ridge and the plate field) have specific gene expression profiles. The differential gene expression of the ridge and plate field is not identical to the profiles of the zones of the gastropod shell field. This observation may suggest an independent evolutionary origin of the shell plates in chitons and gastropods.
{"title":"Early development of the calcified exoskeleton of the polyplacophoran mollusk, with insight into the evolutionary history of shell plates and spicules.","authors":"Hiroki Yoshikawa, Yoshiaki Morino, Hiroshi Wada","doi":"10.1111/dgd.12956","DOIUrl":"https://doi.org/10.1111/dgd.12956","url":null,"abstract":"<p><p>Recent molecular phylogenetic studies have raised two questions about the evolutionary history of the calcified exoskeleton of mollusks. The first question concerns the homology of the two types of skeleton: whether spicules and shell plates share an evolutionary origin. The second question is the homology of the shell plates between chitons and other mollusks, including gastropods and bivalves. To gain insight into these questions, we examined the early development of shell plates and spicules in chitons. We identified several developmental genes that are involved in both shell plates and spicules, suggesting that spicules and shell plates share a common evolutionary origin. We also found that subpopulations of the dorsal shell field (the ridge and the plate field) have specific gene expression profiles. The differential gene expression of the ridge and plate field is not identical to the profiles of the zones of the gastropod shell field. This observation may suggest an independent evolutionary origin of the shell plates in chitons and gastropods.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium. Despite extensive studies, our understanding remains incomplete. Notably, Shh signaling is suggested to promote cardiac differentiation, while paradoxically preventing premature differentiation of SHF progenitors. In this study, we elucidate the role of Shh signaling in the earliest phase of cardiac differentiation. Our meta-analysis of single-cell RNA sequencing suggests that cardiogenic nascent mesoderm cells expressing the bHLH transcription factor Mesp1 interact with axial mesoderm via Hh signaling. Activation of Hh signaling using a Smoothened agonist delayed or suppressed the differentiation of primitive streak cells expressing T-box transcription factor T to Mesp1+ nascent mesoderm cells both in vitro and ex vivo. Conversely, inhibition of Hh signaling by cyclopamine facilitated cardiac differentiation. The reduction of Eomes, an inducer of Mesp1, by Hh signaling appears to be the underlying mechanism of this phenomenon. Our data suggest that SHH secreted from axial mesoderm inhibits premature differentiation of T+ cells to Mesp1+ nascent mesoderm cells, thereby regulating the pace of cardiac differentiation. These findings enhance our comprehension of Shh signaling in cardiac development, underscoring its crucial role in early cardiac differentiation.
Sonic Hedgehog (Shh)编码细胞外信号分子,对心脏发育至关重要。Shh缺失突变体表现出先天性心脏病,这是由于小鼠中线结构功能异常引起的左右不对称缺陷。众所周知,Shh信号也会影响心肌细胞分化、心内膜发育和心脏形态发生,特别是在第二心田(SHF)心脏祖细胞中,这些细胞对右心室、流出道和部分心房起作用。尽管进行了广泛的研究,我们的理解仍然不完整。值得注意的是,Shh信号被认为可以促进心脏分化,同时矛盾地阻止SHF祖细胞的过早分化。在这项研究中,我们阐明了Shh信号在心脏分化的早期阶段的作用。我们对单细胞RNA测序的meta分析表明,表达bHLH转录因子Mesp1的心源性新生中胚层细胞通过Hh信号与轴向中胚层相互作用。在体外和离体实验中,使用Smoothened激动剂激活Hh信号可以延迟或抑制表达T-box转录因子T的原始条纹细胞向Mesp1+新生中胚层细胞的分化。相反,环巴胺对Hh信号的抑制促进了心脏分化。通过Hh信号传导减少Eomes (Mesp1的诱导剂)似乎是这一现象的潜在机制。我们的数据表明,轴向中胚层分泌的SHH抑制T+细胞向Mesp1+新生中胚层细胞的过早分化,从而调节心脏分化的速度。这些发现增强了我们对Shh信号在心脏发育中的理解,强调了其在早期心脏分化中的关键作用。
{"title":"Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.","authors":"Satoshi Inoue, Moe Nosetani, Yoshiro Nakajima, Shinichiro Sakaki, Hiroki Kato, Rie Saba, Naoki Takeshita, Kosuke Nishikawa, Atsuko Ueyama, Kazuhiko Matsuo, Masaki Shigeta, Daisuke Kobayashi, Tomoko Iehara, Kenta Yashiro","doi":"10.1111/dgd.12955","DOIUrl":"https://doi.org/10.1111/dgd.12955","url":null,"abstract":"<p><p>Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium. Despite extensive studies, our understanding remains incomplete. Notably, Shh signaling is suggested to promote cardiac differentiation, while paradoxically preventing premature differentiation of SHF progenitors. In this study, we elucidate the role of Shh signaling in the earliest phase of cardiac differentiation. Our meta-analysis of single-cell RNA sequencing suggests that cardiogenic nascent mesoderm cells expressing the bHLH transcription factor Mesp1 interact with axial mesoderm via Hh signaling. Activation of Hh signaling using a Smoothened agonist delayed or suppressed the differentiation of primitive streak cells expressing T-box transcription factor T to Mesp1<sup>+</sup> nascent mesoderm cells both in vitro and ex vivo. Conversely, inhibition of Hh signaling by cyclopamine facilitated cardiac differentiation. The reduction of Eomes, an inducer of Mesp1, by Hh signaling appears to be the underlying mechanism of this phenomenon. Our data suggest that SHH secreted from axial mesoderm inhibits premature differentiation of T<sup>+</sup> cells to Mesp1<sup>+</sup> nascent mesoderm cells, thereby regulating the pace of cardiac differentiation. These findings enhance our comprehension of Shh signaling in cardiac development, underscoring its crucial role in early cardiac differentiation.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the significant literature about morphological features of limb skeletons involved in tetrapod limb evolution, some questions about carpal and tarsal elements remain. In anurans, the ecomorphological and biomechanical approaches studied long hind limbs (to jump) and forelimbs (to land) and emphasized the role of the long bones in locomotion but disregarded what happens with the nodular elements of the carpus and tarsus. Here, we present a comparative study of nodular elements of the carpus and tarsus in anurans based on whole-mount specimens stained with Alcian Blue (cartilage) and Alizarin Red S (bone and calcified cartilage). The sample comprises 113 species belonging to 33 anuran families and postmetamorphic series in selected species. Further, we analyze the histology of the carpus and tarsus in individuals of nine species. In most anurans, the carpal and tarsal elements are cartilaginous in adult stages. The cartilaginous matrix may present different degrees of calcification. Few taxa present truly ossified carpals and tarsals with marrow cavity, blood cells, and hematopoietic cells. Interpretation of the interspecific variation in the carpus and tarsus skeletons on the most recent anuran phylogeny suggests that the delayed ossification of carpals and tarsals has evolved in derived lineages (e.g. Pelobatoidea and Neobatrachia).
{"title":"A comparative approach to the microstructure in the carpus and tarsus in anurans.","authors":"Marissa Fabrezi, Julio César Cruz","doi":"10.1111/dgd.12957","DOIUrl":"https://doi.org/10.1111/dgd.12957","url":null,"abstract":"<p><p>Despite the significant literature about morphological features of limb skeletons involved in tetrapod limb evolution, some questions about carpal and tarsal elements remain. In anurans, the ecomorphological and biomechanical approaches studied long hind limbs (to jump) and forelimbs (to land) and emphasized the role of the long bones in locomotion but disregarded what happens with the nodular elements of the carpus and tarsus. Here, we present a comparative study of nodular elements of the carpus and tarsus in anurans based on whole-mount specimens stained with Alcian Blue (cartilage) and Alizarin Red S (bone and calcified cartilage). The sample comprises 113 species belonging to 33 anuran families and postmetamorphic series in selected species. Further, we analyze the histology of the carpus and tarsus in individuals of nine species. In most anurans, the carpal and tarsal elements are cartilaginous in adult stages. The cartilaginous matrix may present different degrees of calcification. Few taxa present truly ossified carpals and tarsals with marrow cavity, blood cells, and hematopoietic cells. Interpretation of the interspecific variation in the carpus and tarsus skeletons on the most recent anuran phylogeny suggests that the delayed ossification of carpals and tarsals has evolved in derived lineages (e.g. Pelobatoidea and Neobatrachia).</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyclin-dependent kinases (CDKs) are key regulators of cell cycle progression, in conjunction with cyclins. The cyclin-CDK system is highly conserved among eukaryotes, and CDK1 is considered essential for progression through the M phase. However, the extent to which cell cycle progression depends on CDK1 varies between cell types. Therefore, a range of cell types must be analyzed to comprehensively elucidate the role of CDK1. Cdk1-knockout mice exhibit lethality at an early developmental stage, specifically before the differentiation of various cell types. The aim of the present study was to characterize the effects of CDK1 deficiency in amphibian newts. Cdk1 was disrupted by injecting fertilized newt eggs with CRISPR/Cas9, and the resulting effects on embryonic development and cell proliferation were then evaluated. In both wild-type and Cdk1-crispant newt embryos, CDK1 protein was either stored in the egg until late embryogenesis or potentially derived from maternal mRNA, which may also be stored during this period. The embryos survived to the hatching stage, during which the cells responsible for forming the basic organs differentiated. To further characterize the long-term effects of Cdk1 knockout, parabiosis experiments were conducted using wild-type embryos and Cdk1 crispants. The results suggested that an endocycle occurred in the crispant larvae, as evidenced by increases in the size of several types of cells. It is anticipated that studies using newts will provide further insights into the role of Cdk1 in regulating the cell cycle.
{"title":"Effect of Cdk1 gene disruption on cell cycle progression in newt cells.","authors":"Yuta Nakao, Kazuko Okamoto, Ichiro Tazawa, Tatsuro Nishijima, Nobuaki Furuno, Tetsushi Sakuma, Takashi Yamamoto, Takashi Takeuchi, Toshinori Hayashi","doi":"10.1111/dgd.12958","DOIUrl":"https://doi.org/10.1111/dgd.12958","url":null,"abstract":"<p><p>Cyclin-dependent kinases (CDKs) are key regulators of cell cycle progression, in conjunction with cyclins. The cyclin-CDK system is highly conserved among eukaryotes, and CDK1 is considered essential for progression through the M phase. However, the extent to which cell cycle progression depends on CDK1 varies between cell types. Therefore, a range of cell types must be analyzed to comprehensively elucidate the role of CDK1. Cdk1-knockout mice exhibit lethality at an early developmental stage, specifically before the differentiation of various cell types. The aim of the present study was to characterize the effects of CDK1 deficiency in amphibian newts. Cdk1 was disrupted by injecting fertilized newt eggs with CRISPR/Cas9, and the resulting effects on embryonic development and cell proliferation were then evaluated. In both wild-type and Cdk1-crispant newt embryos, CDK1 protein was either stored in the egg until late embryogenesis or potentially derived from maternal mRNA, which may also be stored during this period. The embryos survived to the hatching stage, during which the cells responsible for forming the basic organs differentiated. To further characterize the long-term effects of Cdk1 knockout, parabiosis experiments were conducted using wild-type embryos and Cdk1 crispants. The results suggested that an endocycle occurred in the crispant larvae, as evidenced by increases in the size of several types of cells. It is anticipated that studies using newts will provide further insights into the role of Cdk1 in regulating the cell cycle.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From September 16 to 19, 2024, an international symposium to celebrate the centennial of the discovery of the gastrula organizer by Hans Spemann and Hilde Mangold, was held at the University of Freiburg, Germany, where they studied embryology. There were 41 plenary lectures, 11 short talks, and 182 poster presentations, with more than 300 participants from 23 countries. The symposium covered research topics broadly related to developmental, cell, genome, and evolutionary biology, mainly focused on early animal development. In addition to in vivo studies on topics such as gastrulation, embryonic patterning, cell polarity, and morphogenesis, recent studies using gastruloids and organoids, which recapitulate embryogenesis and organogenesis in in vitro cell culture, were also presented at this symposium, entitled Self-Organization in Biology. Most of the reported studies used vertebrate models such as mice, frogs, and zebrafish; however, evolutionary studies involving invertebrate and plant models were also presented. Presentations employing traditional methods such as cell transplantation and phenotype screening, and state-of-the-art technologies such as single-cell omics, high-resolution imaging, and computational analysis showed that experimental embryology has a long history, to which studies of the organizer have contributed significantly. Here we discuss memorable aspects of the symposium in the hope that this report will encourage young scientists to actively participate in face-to-face international conferences.
{"title":"Meeting report about self-organization in biology: Freiburg Spemann-Mangold Centennial Symposium.","authors":"Satoshi Kuwana, Yuuri Yasuoka","doi":"10.1111/dgd.12954","DOIUrl":"https://doi.org/10.1111/dgd.12954","url":null,"abstract":"<p><p>From September 16 to 19, 2024, an international symposium to celebrate the centennial of the discovery of the gastrula organizer by Hans Spemann and Hilde Mangold, was held at the University of Freiburg, Germany, where they studied embryology. There were 41 plenary lectures, 11 short talks, and 182 poster presentations, with more than 300 participants from 23 countries. The symposium covered research topics broadly related to developmental, cell, genome, and evolutionary biology, mainly focused on early animal development. In addition to in vivo studies on topics such as gastrulation, embryonic patterning, cell polarity, and morphogenesis, recent studies using gastruloids and organoids, which recapitulate embryogenesis and organogenesis in in vitro cell culture, were also presented at this symposium, entitled Self-Organization in Biology. Most of the reported studies used vertebrate models such as mice, frogs, and zebrafish; however, evolutionary studies involving invertebrate and plant models were also presented. Presentations employing traditional methods such as cell transplantation and phenotype screening, and state-of-the-art technologies such as single-cell omics, high-resolution imaging, and computational analysis showed that experimental embryology has a long history, to which studies of the organizer have contributed significantly. Here we discuss memorable aspects of the symposium in the hope that this report will encourage young scientists to actively participate in face-to-face international conferences.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}