Alexandra M. Coates, Jeremy N. Cohen, Jamie F. Burr
{"title":"Investigating sensor location on the effectiveness of continuous glucose monitoring during exercise in a non-diabetic population","authors":"Alexandra M. Coates, Jeremy N. Cohen, Jamie F. Burr","doi":"10.1080/17461391.2023.2174452","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The purpose of this investigation was to evaluate whether continuous glucose monitoring (CGM) sensors worn on the active muscle may provide enhanced insight into glucose control in non-diabetic participants during cycling exercise compared to traditional sensor placement on the arm. Data from 9 healthy participants (F:3) was recorded using CGM sensors on the arm (<i>triceps brachii</i>) and leg (<i>vastus medialis</i>) following 100 g glucose ingestion during 30 min experimental visits of: resting control, graded cycling, electrically stimulated quadriceps contractions, and passive whole-body heating. Finger capillary glucose was used to assess sensor accuracy. Under control conditions, the traditional arm sensor better reflected capillary glucose, with a mean absolute relative difference (MARD) of 12.4 ± 9.3% versus 18.3 ± 11.4% in the leg (<i>P</i> = 0.02). For the intended use during exercise, the sensor-site difference was attenuated, with similar MARDs during cycling (arm:15.5 ± 12% versus leg:16.7 ± 10.8%, <i>P</i> = 0.96) and quadriceps stimulation (arm:15.5 ± 14.8% versus leg:13.9 ± 9.5%, <i>P</i> = 0.9). At rest, glucose at the leg was consistently lower than the arm (<i>P</i> = 0.01); whereas, during graded cycling, the leg-glucose was lower only after maximal intensity exercise (<i>P</i> = 0.02). There was no difference between sensors during quadriceps stimulation (<i>P</i> = 0.8). Passive heating caused leg-skin temperature to increase by 3.1 ± 1.8°C versus 1.1 ± 0.72°C at the arm (<i>P</i> = 0.002), elevating MARD in the leg (23.5 ± 16.2%) and lowering glucose in the leg (<i>P</i> < 0.001). At rest, traditional placement of CGM sensors on the arm may best reflect blood glucose; however, during cycling, placement on the leg may offer greater insight to working muscle glucose concentrations, and this is likely due to greater blood-flow rather than muscle contractions.</p>\n </div>","PeriodicalId":93999,"journal":{"name":"European journal of sport science","volume":"23 10","pages":"2109-2117"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1080/17461391.2023.2174452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of sport science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1080/17461391.2023.2174452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this investigation was to evaluate whether continuous glucose monitoring (CGM) sensors worn on the active muscle may provide enhanced insight into glucose control in non-diabetic participants during cycling exercise compared to traditional sensor placement on the arm. Data from 9 healthy participants (F:3) was recorded using CGM sensors on the arm (triceps brachii) and leg (vastus medialis) following 100 g glucose ingestion during 30 min experimental visits of: resting control, graded cycling, electrically stimulated quadriceps contractions, and passive whole-body heating. Finger capillary glucose was used to assess sensor accuracy. Under control conditions, the traditional arm sensor better reflected capillary glucose, with a mean absolute relative difference (MARD) of 12.4 ± 9.3% versus 18.3 ± 11.4% in the leg (P = 0.02). For the intended use during exercise, the sensor-site difference was attenuated, with similar MARDs during cycling (arm:15.5 ± 12% versus leg:16.7 ± 10.8%, P = 0.96) and quadriceps stimulation (arm:15.5 ± 14.8% versus leg:13.9 ± 9.5%, P = 0.9). At rest, glucose at the leg was consistently lower than the arm (P = 0.01); whereas, during graded cycling, the leg-glucose was lower only after maximal intensity exercise (P = 0.02). There was no difference between sensors during quadriceps stimulation (P = 0.8). Passive heating caused leg-skin temperature to increase by 3.1 ± 1.8°C versus 1.1 ± 0.72°C at the arm (P = 0.002), elevating MARD in the leg (23.5 ± 16.2%) and lowering glucose in the leg (P < 0.001). At rest, traditional placement of CGM sensors on the arm may best reflect blood glucose; however, during cycling, placement on the leg may offer greater insight to working muscle glucose concentrations, and this is likely due to greater blood-flow rather than muscle contractions.