{"title":"Strain wars 5: Gibbs energies of binding of BA.1 through BA.4 variants of SARS-CoV-2","authors":"Marko Popovic","doi":"10.1016/j.mran.2022.100231","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports, for the first time, standard Gibbs energies of binding of the BA.1, BA.2, BA.3, BA.2.13, BA.2.12.1 and BA.4 Omicron variants of SARS-CoV-2, to the Human ACE2 receptor. Variants BA.1 through BA.3 exhibit a trend of decreasing standard Gibbs energy of binding and hence increased infectivity. The BA.4 variant exhibits a less negative standard Gibbs energy of binding, but also more efficient evasion of the immune response. Therefore, it was concluded that all the analyzed strains evolve in accordance with expectations of the theory of evolution, albeit using different strategies.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"22 ","pages":"Article 100231"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392893/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352222000305","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 15
Abstract
This paper reports, for the first time, standard Gibbs energies of binding of the BA.1, BA.2, BA.3, BA.2.13, BA.2.12.1 and BA.4 Omicron variants of SARS-CoV-2, to the Human ACE2 receptor. Variants BA.1 through BA.3 exhibit a trend of decreasing standard Gibbs energy of binding and hence increased infectivity. The BA.4 variant exhibits a less negative standard Gibbs energy of binding, but also more efficient evasion of the immune response. Therefore, it was concluded that all the analyzed strains evolve in accordance with expectations of the theory of evolution, albeit using different strategies.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.