Hongjie Cai, Aojie Li, Guangjun Yu, Xiujun Yang, Manhua Liu
{"title":"Brain Age Prediction in Developing Childhood with Multimodal Magnetic Resonance Images.","authors":"Hongjie Cai, Aojie Li, Guangjun Yu, Xiujun Yang, Manhua Liu","doi":"10.1007/s12021-022-09596-1","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that brain development is very fast and complex in the early childhood with age-based neurological and physiological changes of brain structure and function. The brain maturity is an important indicator for evaluating the normal development of children. In this paper, we propose a multimodal regression framework to combine the features from structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) data for age prediction of children. First, three types of features are extracted from sMRI and DTI data. Second, we propose to combine the sparse coding and Q-Learning for feature selection from each modality. Finally, the ensemble regression is performed by random forest based on proximity measures to fuse multimodal features for age prediction. The proposed method is evaluated on 212 participants, including 76 young children less than 2 years old and 136 children aged from 2-15 years old recruited from Shanghai Children's Hospital. The results show that integrating multimodal features has achieved the highest accuracies with the root mean squared error (RMSE) of 0.208 years and mean absolute error (MAE) of 0.150 years for age prediction of young children (0-2), and RMSE of 1.666 years and MAE of 1.087 years for older children (2-15). We have shown that the selected features by Q-Learning can consistently improve the prediction accuracy. The comparison of prediction results demonstrates that the proposed method performs better than other competing methods.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 1","pages":"5-19"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-022-09596-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
It is well known that brain development is very fast and complex in the early childhood with age-based neurological and physiological changes of brain structure and function. The brain maturity is an important indicator for evaluating the normal development of children. In this paper, we propose a multimodal regression framework to combine the features from structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) data for age prediction of children. First, three types of features are extracted from sMRI and DTI data. Second, we propose to combine the sparse coding and Q-Learning for feature selection from each modality. Finally, the ensemble regression is performed by random forest based on proximity measures to fuse multimodal features for age prediction. The proposed method is evaluated on 212 participants, including 76 young children less than 2 years old and 136 children aged from 2-15 years old recruited from Shanghai Children's Hospital. The results show that integrating multimodal features has achieved the highest accuracies with the root mean squared error (RMSE) of 0.208 years and mean absolute error (MAE) of 0.150 years for age prediction of young children (0-2), and RMSE of 1.666 years and MAE of 1.087 years for older children (2-15). We have shown that the selected features by Q-Learning can consistently improve the prediction accuracy. The comparison of prediction results demonstrates that the proposed method performs better than other competing methods.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.