首页 > 最新文献

Neuroinformatics最新文献

英文 中文
SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-03 DOI: 10.1007/s12021-025-09719-4
Pantelis Antonoudiou, Trina Basu, Jamie Maguire

Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.

{"title":"SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.","authors":"Pantelis Antonoudiou, Trina Basu, Jamie Maguire","doi":"10.1007/s12021-025-09719-4","DOIUrl":"https://doi.org/10.1007/s12021-025-09719-4","url":null,"abstract":"<p><p>Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"23"},"PeriodicalIF":2.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-25 DOI: 10.1007/s12021-025-09715-8
Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan

In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.

在本期 "新出现的问题"(Matters Arising)中,我们将对 Shapson-Coe 等人高分辨率、三维重建人类大脑皮层组织所凸显的数据处理和计算挑战进行批判性研究。这项研究是连接组学领域的一个技术里程碑,它涉及 1.4 Petabyte 数据集,这些数据集来自对一立方毫米颞叶皮层的测绘,研究结果还揭示了将此类方法扩展到整个人类大脑所固有的巨大障碍。除了应用人工智能(AI)进行分割和突触检测外,该研究还强调了这种规模的数据采集、清理、配准和可视化的巨大复杂性。本文通过将 Shapson-Coe 工作的计算和基础设施要求与其他大规模神经科学计划(如果蝇脑图谱)进行比较,并探索量子计算和神经形态硬件等新兴技术作为潜在的解决方案,来说明这些挑战的来龙去脉。此外,我们还讨论了管理 zettabyte 级数据集所涉及的伦理和后勤问题,并强调了开展国际合作以实现绘制人类连接组图谱这一宏伟目标的必要性。通过批判性地探讨这些挑战和潜在的解决方案,本文旨在指导连接组学领域未来的发展及其在神经科学、人工智能和医学领域的变革性应用。
{"title":"Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.","authors":"Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan","doi":"10.1007/s12021-025-09715-8","DOIUrl":"https://doi.org/10.1007/s12021-025-09715-8","url":null,"abstract":"<p><p>In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"22"},"PeriodicalIF":2.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling Integration-Segregation Imbalances in Schizophrenia Through Topological High-Order Functional Connectivity.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-22 DOI: 10.1007/s12021-025-09718-5
Qiang Li, Wei Huang, Chen Qiao, Huafu Chen

Background: The occurrence of brain disorders correlates with detectable dysfunctions in the specialization of brain connectomics. While extensive research has explored this relationship, there is a lack of studies specifically examining the statistical correlation between the integration and segregation of psychotic brain networks using high-order networks, given the limitations of low-order networks. Moreover, these dysfunctions are believed to be linked to information imbalances in brain functions. However, our understanding of how these imbalances give rise to specific psychotic symptoms remains limited.

Methods: This study aims to address this gap by investigating variations at the topological high-order level of the system with regard to specialization in both healthy individuals and those diagnosed with schizophrenia. By employing graph-theoretic brain network analysis, we systematically examine information integration and segregation to delineate system-level differences in the connectivity patterns of brain networks.

Results: The findings indicate that topological high-order functional connectomics highlight differences in the connectome between healthy controls and schizophrenia, demonstrating increased cingulo-opercular task control and salience interactions, while the interaction between subcortical and default mode networks, dorsal attention and sensory/somatomotor mouth decreases in schizophrenia. Furthermore, we observed a reduction in the segregation of brain systems in healthy controls compared to individuals with schizophrenia, which means the balance between segregation and integration of brain networks is disrupted in schizophrenia, suggesting that restoring this balance may aid in the treatment of the disorder. Additionally, the increased segregation and decreased integration of brain systems in schizophrenia patients compared to healthy controls may serve as a novel indicator for early schizophrenia diagnosis.

Conclusion: We discovered that topological high-order functional connectivity highlights brain network interactions compared to low-order functional connectivity. Furthermore, we observed alterations in specific brain regions associated with schizophrenia, as well as changes in brain network information integration and segregation in individuals with schizophrenia.

{"title":"Unraveling Integration-Segregation Imbalances in Schizophrenia Through Topological High-Order Functional Connectivity.","authors":"Qiang Li, Wei Huang, Chen Qiao, Huafu Chen","doi":"10.1007/s12021-025-09718-5","DOIUrl":"https://doi.org/10.1007/s12021-025-09718-5","url":null,"abstract":"<p><strong>Background: </strong>The occurrence of brain disorders correlates with detectable dysfunctions in the specialization of brain connectomics. While extensive research has explored this relationship, there is a lack of studies specifically examining the statistical correlation between the integration and segregation of psychotic brain networks using high-order networks, given the limitations of low-order networks. Moreover, these dysfunctions are believed to be linked to information imbalances in brain functions. However, our understanding of how these imbalances give rise to specific psychotic symptoms remains limited.</p><p><strong>Methods: </strong>This study aims to address this gap by investigating variations at the topological high-order level of the system with regard to specialization in both healthy individuals and those diagnosed with schizophrenia. By employing graph-theoretic brain network analysis, we systematically examine information integration and segregation to delineate system-level differences in the connectivity patterns of brain networks.</p><p><strong>Results: </strong>The findings indicate that topological high-order functional connectomics highlight differences in the connectome between healthy controls and schizophrenia, demonstrating increased cingulo-opercular task control and salience interactions, while the interaction between subcortical and default mode networks, dorsal attention and sensory/somatomotor mouth decreases in schizophrenia. Furthermore, we observed a reduction in the segregation of brain systems in healthy controls compared to individuals with schizophrenia, which means the balance between segregation and integration of brain networks is disrupted in schizophrenia, suggesting that restoring this balance may aid in the treatment of the disorder. Additionally, the increased segregation and decreased integration of brain systems in schizophrenia patients compared to healthy controls may serve as a novel indicator for early schizophrenia diagnosis.</p><p><strong>Conclusion: </strong>We discovered that topological high-order functional connectivity highlights brain network interactions compared to low-order functional connectivity. Furthermore, we observed alterations in specific brain regions associated with schizophrenia, as well as changes in brain network information integration and segregation in individuals with schizophrenia.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"21"},"PeriodicalIF":2.7,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-10 DOI: 10.1007/s12021-024-09702-5
Roberto Barumerli, Piotr Majdak

Research in hearing science often relies on auditory models to describe listener's behaviour and its neural underpinning in acoustic environments. These models gather empirical evidence from behavioural data to address research questions on the neural mechanisms underlying sound perception. Despite seemingly similar statistical methods, auditory models are often implemented for each study separately, which hinders reproducibility and across-study comparisons, thus limiting the advancement at a field level. Here, we introduce a framework for studying neural mechanisms of sound perception by employing auditory modeling based on Bayesian inference (FrAMBI), a MATLAB/Octave toolbox. FrAMBI provides a standardized structure to implement an auditory model following the perception-action cycle and enables the automatic application of statistical analysis with behavioural data. We show FrAMBI's capabilities in several examples with increasing levels of complexity within the context of sound source localisation tasks: a basic implementation for a static scenario, iterating over the perception-action cycle with a moving sound source, the definition of multiple model variants testing different neural mechanisms, and the procedure for parameter estimation and model comparison. Being integrated into the widely used auditory modelling toolbox (AMT), FrAMBI is planned to be maintained in the long term and expanded accordingly, fostering reproducible research in the field of neuroscience.

{"title":"FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference.","authors":"Roberto Barumerli, Piotr Majdak","doi":"10.1007/s12021-024-09702-5","DOIUrl":"https://doi.org/10.1007/s12021-024-09702-5","url":null,"abstract":"<p><p>Research in hearing science often relies on auditory models to describe listener's behaviour and its neural underpinning in acoustic environments. These models gather empirical evidence from behavioural data to address research questions on the neural mechanisms underlying sound perception. Despite seemingly similar statistical methods, auditory models are often implemented for each study separately, which hinders reproducibility and across-study comparisons, thus limiting the advancement at a field level. Here, we introduce a framework for studying neural mechanisms of sound perception by employing auditory modeling based on Bayesian inference (FrAMBI), a MATLAB/Octave toolbox. FrAMBI provides a standardized structure to implement an auditory model following the perception-action cycle and enables the automatic application of statistical analysis with behavioural data. We show FrAMBI's capabilities in several examples with increasing levels of complexity within the context of sound source localisation tasks: a basic implementation for a static scenario, iterating over the perception-action cycle with a moving sound source, the definition of multiple model variants testing different neural mechanisms, and the procedure for parameter estimation and model comparison. Being integrated into the widely used auditory modelling toolbox (AMT), FrAMBI is planned to be maintained in the long term and expanded accordingly, fostering reproducible research in the field of neuroscience.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"20"},"PeriodicalIF":2.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-06 DOI: 10.1007/s12021-025-09716-7
Zahra Rabiei, Hussain Montazery Kordy

The complementary properties of both modalities can be exploited through the fusion of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. Thus, a joint analysis of both modalities can be used in brain studies to estimate brain activity's shared and unshared components. This study introduces a comprehensive approach for jointly analyzing EEG and fMRI data using the advanced coupled matrix tensor factorization (ACMTF) method. The similarity of the components based on normalized mutual information (NMI) was defined to overcome the restrictive equality assumption of shared components in the common dimension of the ACMTF method. Because the mutual information (MI) measure can identify both linear and nonlinear relationships between the components, the proposed method can be viewed as a generalization of the ACMTF method; thus, it is called the generalized coupled matrix tensor factorization (GCMTF). The proposed GCMTF method was applied to simulated data, in which the components exhibited a nonlinear relationship. The results demonstrate that the average match score increased by 23.46% compared with the ACMTF model, even with different noise levels. Furthermore, applying this method to real data from an auditory oddball paradigm demonstrated that three shared components with frequency responses in the alpha and theta bands were identified. The proposed MI-based method cannot only extract shared components with any nonlinear or linear relationship but can also identify more active brain areas corresponding to an auditory oddball paradigm compared to ACMTF and other similar methods.

{"title":"Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis.","authors":"Zahra Rabiei, Hussain Montazery Kordy","doi":"10.1007/s12021-025-09716-7","DOIUrl":"https://doi.org/10.1007/s12021-025-09716-7","url":null,"abstract":"<p><p>The complementary properties of both modalities can be exploited through the fusion of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. Thus, a joint analysis of both modalities can be used in brain studies to estimate brain activity's shared and unshared components. This study introduces a comprehensive approach for jointly analyzing EEG and fMRI data using the advanced coupled matrix tensor factorization (ACMTF) method. The similarity of the components based on normalized mutual information (NMI) was defined to overcome the restrictive equality assumption of shared components in the common dimension of the ACMTF method. Because the mutual information (MI) measure can identify both linear and nonlinear relationships between the components, the proposed method can be viewed as a generalization of the ACMTF method; thus, it is called the generalized coupled matrix tensor factorization (GCMTF). The proposed GCMTF method was applied to simulated data, in which the components exhibited a nonlinear relationship. The results demonstrate that the average match score increased by 23.46% compared with the ACMTF model, even with different noise levels. Furthermore, applying this method to real data from an auditory oddball paradigm demonstrated that three shared components with frequency responses in the alpha and theta bands were identified. The proposed MI-based method cannot only extract shared components with any nonlinear or linear relationship but can also identify more active brain areas corresponding to an auditory oddball paradigm compared to ACMTF and other similar methods.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"19"},"PeriodicalIF":2.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-02-01 DOI: 10.1007/s12021-025-09717-6
Asif Mehmood, Ayesha Ilyas, Hajira Ilyas

The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cellular interactions or not capable of representing the complex ion channel dynamics. Therefore, scientists are unable to extract the overall behavior of organs by electrical response of heterogeneous cells of brain and heart. In this study, a unified model of excitable cells is proposed that can be modulated by adrenergic features. By implementing the proposed model, a network of one thousand sparsely coupled cardio-neural network is simulated. The major findings of study include i. cardiac heterogeneity in electrical behavior of cardiac myocytes is the prime factor of heart rate variability ii. Brain-heart interplay through electrical pulses holds the necessary information of brain and heart signals that can be analyzed through spiking neural networks iii. Heart rate variability can be predicted and monitored by spiking neural networks from electrophysiological recordings of brain and heart iv. Heart rate variability related to tachycardia and bradycardia depends upon the polarization protocols of cardiac myocytes during plateau phase of action potential. This study provides the modeling and simulation phase of brain-heart interface to predict the morbidity at early stages. The recent advancements in nano-electronics will make is possible to develop brain-heart interface as nano-chip to deploy in subject to stimulate the brain-heart interplay through electrophysiological signals.

{"title":"Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation.","authors":"Asif Mehmood, Ayesha Ilyas, Hajira Ilyas","doi":"10.1007/s12021-025-09717-6","DOIUrl":"https://doi.org/10.1007/s12021-025-09717-6","url":null,"abstract":"<p><p>The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cellular interactions or not capable of representing the complex ion channel dynamics. Therefore, scientists are unable to extract the overall behavior of organs by electrical response of heterogeneous cells of brain and heart. In this study, a unified model of excitable cells is proposed that can be modulated by adrenergic features. By implementing the proposed model, a network of one thousand sparsely coupled cardio-neural network is simulated. The major findings of study include i. cardiac heterogeneity in electrical behavior of cardiac myocytes is the prime factor of heart rate variability ii. Brain-heart interplay through electrical pulses holds the necessary information of brain and heart signals that can be analyzed through spiking neural networks iii. Heart rate variability can be predicted and monitored by spiking neural networks from electrophysiological recordings of brain and heart iv. Heart rate variability related to tachycardia and bradycardia depends upon the polarization protocols of cardiac myocytes during plateau phase of action potential. This study provides the modeling and simulation phase of brain-heart interface to predict the morbidity at early stages. The recent advancements in nano-electronics will make is possible to develop brain-heart interface as nano-chip to deploy in subject to stimulate the brain-heart interplay through electrophysiological signals.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"18"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the Time-frequency Features for Impulse Components in EEG Signals.
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-23 DOI: 10.1007/s12021-024-09698-y
Natalia Filimonova, Maria Specovius-Neugebauer, Elfriede Friedmann

Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.

{"title":"Determination of the Time-frequency Features for Impulse Components in EEG Signals.","authors":"Natalia Filimonova, Maria Specovius-Neugebauer, Elfriede Friedmann","doi":"10.1007/s12021-024-09698-y","DOIUrl":"10.1007/s12021-024-09698-y","url":null,"abstract":"<p><p>Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"17"},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA). 基于开源软件工具(SELMA)的7T 2D期相对比MRI脑穿动脉血流速度分析。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-22 DOI: 10.1007/s12021-024-09703-4
S D T Pham, C Chatziantoniou, J T van Vliet, R J van Tuijl, M Bulk, M Costagli, L de Rochefort, O Kraff, M E Ladd, K Pine, I Ronen, J C W Siero, M Tosetti, A Villringer, G J Biessels, J J M Zwanenburg

Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (vmean) and velocity PI of SELMA was very similar to the original results (vmean: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (Ndetected: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for Ndetected, vmean, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.

在二维平面上,通过相衬磁成像(2D PC-MRI)可以量化脑穿动脉的血流速度。速度脉搏指数(PI)可以反映这些穿孔动脉的僵硬程度,这与几种脑血管疾病有关。目前,还没有针对这些小血管的2D PC-MRI数据的开源分析工具,阻碍了这些测量的使用。在这项研究中,我们提出了小血管标记(SELMA)分析软件,作为一种新颖的、用户友好的、开源的工具,用于分析脑穿孔动脉的流速。SELMA中分析算法的实现通过Bland-Altman分析对先前发表的数据进行了验证。SELMA的评分间信度评估了来自八个不同地点的三个MRI供应商的60名参与者的PC-MRI数据。SELMA的平均速度(vmean)和速度PI与原始结果非常相似(vmean:平均差±标准差:0.1±0.8 cm/s;速度PI:平均差值±标准差:0.01±0.1),而SELMA检测到的血管数量略高(未检测到的血管数量:平均差值±标准差:4±9),这可以用SELMA的血管选择范式来解释。使用SELMA的两个操作符之间绘制的感兴趣区域的骰子相似系数为0.91(范围为0.69-0.95),Ndetected, vmean和速度PI的总体类内系数分别为0.92,0.84和0.85。结果测量在不同地点之间的差异大于供应商之间的差异,这表明在协调2D PC-MRI序列方面存在挑战,即使是在同一供应商的不同地点。我们表明SELMA是一个一致的和用户友好的小脑血管分析工具。
{"title":"Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA).","authors":"S D T Pham, C Chatziantoniou, J T van Vliet, R J van Tuijl, M Bulk, M Costagli, L de Rochefort, O Kraff, M E Ladd, K Pine, I Ronen, J C W Siero, M Tosetti, A Villringer, G J Biessels, J J M Zwanenburg","doi":"10.1007/s12021-024-09703-4","DOIUrl":"10.1007/s12021-024-09703-4","url":null,"abstract":"<p><p>Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (v<sub>mean</sub>) and velocity PI of SELMA was very similar to the original results (v<sub>mean</sub>: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (N<sub>detected</sub>: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for N<sub>detected</sub>, v<sub>mean</sub>, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"11"},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model. CDCG-UNet:基于扩张通道门注意U-Net模型的混沌优化辅助脑肿瘤分割。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-22 DOI: 10.1007/s12021-024-09701-6
K Bhagyalaxmi, B Dwarakanath

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.

脑肿瘤是最致命、最引人注目的癌症之一,儿童和成人都受其影响。脑肿瘤诊断的主要缺点之一是诊断晚和脑肿瘤检测设备的高成本。大多数现有方法使用ML算法来解决问题,但它们存在精度低、高损失和高计算成本等缺点。为了解决这些挑战,提出了一种新的U-Net模型用于磁共振图像(MRI)中的肿瘤分割。首先,从数据集中提取图像,并使用概率混合维纳滤波器(PHWF)进行预处理,以去除不必要的噪声并提高图像质量。为了降低模型的复杂性,预处理后的图像被提交到一个被称为3D卷积视觉变换(3D- vt)的特征提取过程中。采用混沌优化辅助扩张通道门(CDCG-UNet)模型对脑肿瘤区域进行有效分割。该方法将肿瘤部分分为全肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)位置。优化损失函数可以用混沌Harris收缩螺旋优化算法(CHSOA)来实现。提出的CDCG-UNet模型使用三个数据集进行评估:BRATS 2021, BRATS 2020和BRATS 2023。对于BRATS 2021数据集,所提出的CDCG-UNet模型在ET、CT和WT上的骰子得分分别为0.972、0.987和0.98。对于BRATS 2020数据集,所提出的CDCG-UNet模型在ET、CT和WT上的骰子得分分别为98.87%、98.67%和99.1%。使用BRATS 2023数据集进一步评估CDCG-UNet模型,ET、CT和WT的骰子得分分别为98.42%、98.08%和99.3%。
{"title":"CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.","authors":"K Bhagyalaxmi, B Dwarakanath","doi":"10.1007/s12021-024-09701-6","DOIUrl":"https://doi.org/10.1007/s12021-024-09701-6","url":null,"abstract":"<p><p>Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"12"},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis. 鉴定进行性多发性硬化症患者脉络膜丛差异表达基因的补充策略。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-21 DOI: 10.1007/s12021-024-09713-2
Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.

多发性硬化症(MS)是一种神经系统疾病,通过炎症和自身免疫过程引起髓磷脂和轴突损伤。尽管影响着全世界数百万人,但对其遗传途径的了解仍然有限。脉络膜丛(ChP)在神经退行性过程和多发性硬化症等疾病中因其失调而被研究,但其在多发性硬化症病理生理中的作用尚不清楚。我们的工作重新评估进展性MS患者的ChP转录组,并使用不同的方法学策略比较基因表达谱。使用患者和健康对照的死后患者脑组织RNASeq测序样本(GEO: GSE137619)。在对这些数据进行评估和质量控制后,他们使用三种策略对其转录本进行了定位和量化,以对照智人的参考转录组GRCh38/hg38,以识别进展性MS患者的差异表达基因。基因的功能分析揭示了它们参与免疫过程、细胞粘附和迁移、激素作用、氨基酸运输、趋化因子、金属和信号通路。我们的研究结果可以为渐进式MS治疗提供有价值的见解,表明特定基因影响免疫细胞募集和潜在的ChP微环境变化。结合互补的方法最大限度地扩大了文献覆盖,促进了对进展性多发性硬化症的生物学背景的更深层次的理解。
{"title":"Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.","authors":"Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães","doi":"10.1007/s12021-024-09713-2","DOIUrl":"https://doi.org/10.1007/s12021-024-09713-2","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"10"},"PeriodicalIF":2.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1