Pub Date : 2025-03-03DOI: 10.1007/s12021-025-09719-4
Pantelis Antonoudiou, Trina Basu, Jamie Maguire
Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.
{"title":"SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.","authors":"Pantelis Antonoudiou, Trina Basu, Jamie Maguire","doi":"10.1007/s12021-025-09719-4","DOIUrl":"https://doi.org/10.1007/s12021-025-09719-4","url":null,"abstract":"<p><p>Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic recordings. Researchers instead rely on manual curation of seizure detection that is highly laborious, inefficient and can be error prone and heavily biased. Here we have developed - SeizyML - an open-source software that combines machine learning models with manual validation of detected events reducing bias and promoting efficient and accurate detection of electrographic seizures. We compared the validity of four interpretable machine learning classifiers (decision tree, gaussian naïve bayes, passive aggressive classifier, and stochastic gradient descent classifier) on an extensive electrographic seizure dataset that we collected from chronically epileptic mice. We find that the gaussian naïve bayes model detected all seizures in our dataset, had the lowest false detection rate, was robust to misclassifications, and only required a small amount of data to train. This approach has the potential to be a transformative research tool overcoming the analysis bottleneck that slows research progress.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"23"},"PeriodicalIF":2.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.
{"title":"Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.","authors":"Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan","doi":"10.1007/s12021-025-09715-8","DOIUrl":"https://doi.org/10.1007/s12021-025-09715-8","url":null,"abstract":"<p><p>In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"22"},"PeriodicalIF":2.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-22DOI: 10.1007/s12021-025-09718-5
Qiang Li, Wei Huang, Chen Qiao, Huafu Chen
Background: The occurrence of brain disorders correlates with detectable dysfunctions in the specialization of brain connectomics. While extensive research has explored this relationship, there is a lack of studies specifically examining the statistical correlation between the integration and segregation of psychotic brain networks using high-order networks, given the limitations of low-order networks. Moreover, these dysfunctions are believed to be linked to information imbalances in brain functions. However, our understanding of how these imbalances give rise to specific psychotic symptoms remains limited.
Methods: This study aims to address this gap by investigating variations at the topological high-order level of the system with regard to specialization in both healthy individuals and those diagnosed with schizophrenia. By employing graph-theoretic brain network analysis, we systematically examine information integration and segregation to delineate system-level differences in the connectivity patterns of brain networks.
Results: The findings indicate that topological high-order functional connectomics highlight differences in the connectome between healthy controls and schizophrenia, demonstrating increased cingulo-opercular task control and salience interactions, while the interaction between subcortical and default mode networks, dorsal attention and sensory/somatomotor mouth decreases in schizophrenia. Furthermore, we observed a reduction in the segregation of brain systems in healthy controls compared to individuals with schizophrenia, which means the balance between segregation and integration of brain networks is disrupted in schizophrenia, suggesting that restoring this balance may aid in the treatment of the disorder. Additionally, the increased segregation and decreased integration of brain systems in schizophrenia patients compared to healthy controls may serve as a novel indicator for early schizophrenia diagnosis.
Conclusion: We discovered that topological high-order functional connectivity highlights brain network interactions compared to low-order functional connectivity. Furthermore, we observed alterations in specific brain regions associated with schizophrenia, as well as changes in brain network information integration and segregation in individuals with schizophrenia.
{"title":"Unraveling Integration-Segregation Imbalances in Schizophrenia Through Topological High-Order Functional Connectivity.","authors":"Qiang Li, Wei Huang, Chen Qiao, Huafu Chen","doi":"10.1007/s12021-025-09718-5","DOIUrl":"https://doi.org/10.1007/s12021-025-09718-5","url":null,"abstract":"<p><strong>Background: </strong>The occurrence of brain disorders correlates with detectable dysfunctions in the specialization of brain connectomics. While extensive research has explored this relationship, there is a lack of studies specifically examining the statistical correlation between the integration and segregation of psychotic brain networks using high-order networks, given the limitations of low-order networks. Moreover, these dysfunctions are believed to be linked to information imbalances in brain functions. However, our understanding of how these imbalances give rise to specific psychotic symptoms remains limited.</p><p><strong>Methods: </strong>This study aims to address this gap by investigating variations at the topological high-order level of the system with regard to specialization in both healthy individuals and those diagnosed with schizophrenia. By employing graph-theoretic brain network analysis, we systematically examine information integration and segregation to delineate system-level differences in the connectivity patterns of brain networks.</p><p><strong>Results: </strong>The findings indicate that topological high-order functional connectomics highlight differences in the connectome between healthy controls and schizophrenia, demonstrating increased cingulo-opercular task control and salience interactions, while the interaction between subcortical and default mode networks, dorsal attention and sensory/somatomotor mouth decreases in schizophrenia. Furthermore, we observed a reduction in the segregation of brain systems in healthy controls compared to individuals with schizophrenia, which means the balance between segregation and integration of brain networks is disrupted in schizophrenia, suggesting that restoring this balance may aid in the treatment of the disorder. Additionally, the increased segregation and decreased integration of brain systems in schizophrenia patients compared to healthy controls may serve as a novel indicator for early schizophrenia diagnosis.</p><p><strong>Conclusion: </strong>We discovered that topological high-order functional connectivity highlights brain network interactions compared to low-order functional connectivity. Furthermore, we observed alterations in specific brain regions associated with schizophrenia, as well as changes in brain network information integration and segregation in individuals with schizophrenia.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"21"},"PeriodicalIF":2.7,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1007/s12021-024-09702-5
Roberto Barumerli, Piotr Majdak
Research in hearing science often relies on auditory models to describe listener's behaviour and its neural underpinning in acoustic environments. These models gather empirical evidence from behavioural data to address research questions on the neural mechanisms underlying sound perception. Despite seemingly similar statistical methods, auditory models are often implemented for each study separately, which hinders reproducibility and across-study comparisons, thus limiting the advancement at a field level. Here, we introduce a framework for studying neural mechanisms of sound perception by employing auditory modeling based on Bayesian inference (FrAMBI), a MATLAB/Octave toolbox. FrAMBI provides a standardized structure to implement an auditory model following the perception-action cycle and enables the automatic application of statistical analysis with behavioural data. We show FrAMBI's capabilities in several examples with increasing levels of complexity within the context of sound source localisation tasks: a basic implementation for a static scenario, iterating over the perception-action cycle with a moving sound source, the definition of multiple model variants testing different neural mechanisms, and the procedure for parameter estimation and model comparison. Being integrated into the widely used auditory modelling toolbox (AMT), FrAMBI is planned to be maintained in the long term and expanded accordingly, fostering reproducible research in the field of neuroscience.
{"title":"FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference.","authors":"Roberto Barumerli, Piotr Majdak","doi":"10.1007/s12021-024-09702-5","DOIUrl":"https://doi.org/10.1007/s12021-024-09702-5","url":null,"abstract":"<p><p>Research in hearing science often relies on auditory models to describe listener's behaviour and its neural underpinning in acoustic environments. These models gather empirical evidence from behavioural data to address research questions on the neural mechanisms underlying sound perception. Despite seemingly similar statistical methods, auditory models are often implemented for each study separately, which hinders reproducibility and across-study comparisons, thus limiting the advancement at a field level. Here, we introduce a framework for studying neural mechanisms of sound perception by employing auditory modeling based on Bayesian inference (FrAMBI), a MATLAB/Octave toolbox. FrAMBI provides a standardized structure to implement an auditory model following the perception-action cycle and enables the automatic application of statistical analysis with behavioural data. We show FrAMBI's capabilities in several examples with increasing levels of complexity within the context of sound source localisation tasks: a basic implementation for a static scenario, iterating over the perception-action cycle with a moving sound source, the definition of multiple model variants testing different neural mechanisms, and the procedure for parameter estimation and model comparison. Being integrated into the widely used auditory modelling toolbox (AMT), FrAMBI is planned to be maintained in the long term and expanded accordingly, fostering reproducible research in the field of neuroscience.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"20"},"PeriodicalIF":2.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1007/s12021-025-09716-7
Zahra Rabiei, Hussain Montazery Kordy
The complementary properties of both modalities can be exploited through the fusion of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. Thus, a joint analysis of both modalities can be used in brain studies to estimate brain activity's shared and unshared components. This study introduces a comprehensive approach for jointly analyzing EEG and fMRI data using the advanced coupled matrix tensor factorization (ACMTF) method. The similarity of the components based on normalized mutual information (NMI) was defined to overcome the restrictive equality assumption of shared components in the common dimension of the ACMTF method. Because the mutual information (MI) measure can identify both linear and nonlinear relationships between the components, the proposed method can be viewed as a generalization of the ACMTF method; thus, it is called the generalized coupled matrix tensor factorization (GCMTF). The proposed GCMTF method was applied to simulated data, in which the components exhibited a nonlinear relationship. The results demonstrate that the average match score increased by 23.46% compared with the ACMTF model, even with different noise levels. Furthermore, applying this method to real data from an auditory oddball paradigm demonstrated that three shared components with frequency responses in the alpha and theta bands were identified. The proposed MI-based method cannot only extract shared components with any nonlinear or linear relationship but can also identify more active brain areas corresponding to an auditory oddball paradigm compared to ACMTF and other similar methods.
{"title":"Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis.","authors":"Zahra Rabiei, Hussain Montazery Kordy","doi":"10.1007/s12021-025-09716-7","DOIUrl":"https://doi.org/10.1007/s12021-025-09716-7","url":null,"abstract":"<p><p>The complementary properties of both modalities can be exploited through the fusion of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. Thus, a joint analysis of both modalities can be used in brain studies to estimate brain activity's shared and unshared components. This study introduces a comprehensive approach for jointly analyzing EEG and fMRI data using the advanced coupled matrix tensor factorization (ACMTF) method. The similarity of the components based on normalized mutual information (NMI) was defined to overcome the restrictive equality assumption of shared components in the common dimension of the ACMTF method. Because the mutual information (MI) measure can identify both linear and nonlinear relationships between the components, the proposed method can be viewed as a generalization of the ACMTF method; thus, it is called the generalized coupled matrix tensor factorization (GCMTF). The proposed GCMTF method was applied to simulated data, in which the components exhibited a nonlinear relationship. The results demonstrate that the average match score increased by 23.46% compared with the ACMTF model, even with different noise levels. Furthermore, applying this method to real data from an auditory oddball paradigm demonstrated that three shared components with frequency responses in the alpha and theta bands were identified. The proposed MI-based method cannot only extract shared components with any nonlinear or linear relationship but can also identify more active brain areas corresponding to an auditory oddball paradigm compared to ACMTF and other similar methods.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"19"},"PeriodicalIF":2.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1007/s12021-025-09717-6
Asif Mehmood, Ayesha Ilyas, Hajira Ilyas
The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cellular interactions or not capable of representing the complex ion channel dynamics. Therefore, scientists are unable to extract the overall behavior of organs by electrical response of heterogeneous cells of brain and heart. In this study, a unified model of excitable cells is proposed that can be modulated by adrenergic features. By implementing the proposed model, a network of one thousand sparsely coupled cardio-neural network is simulated. The major findings of study include i. cardiac heterogeneity in electrical behavior of cardiac myocytes is the prime factor of heart rate variability ii. Brain-heart interplay through electrical pulses holds the necessary information of brain and heart signals that can be analyzed through spiking neural networks iii. Heart rate variability can be predicted and monitored by spiking neural networks from electrophysiological recordings of brain and heart iv. Heart rate variability related to tachycardia and bradycardia depends upon the polarization protocols of cardiac myocytes during plateau phase of action potential. This study provides the modeling and simulation phase of brain-heart interface to predict the morbidity at early stages. The recent advancements in nano-electronics will make is possible to develop brain-heart interface as nano-chip to deploy in subject to stimulate the brain-heart interplay through electrophysiological signals.
{"title":"Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation.","authors":"Asif Mehmood, Ayesha Ilyas, Hajira Ilyas","doi":"10.1007/s12021-025-09717-6","DOIUrl":"https://doi.org/10.1007/s12021-025-09717-6","url":null,"abstract":"<p><p>The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cellular interactions or not capable of representing the complex ion channel dynamics. Therefore, scientists are unable to extract the overall behavior of organs by electrical response of heterogeneous cells of brain and heart. In this study, a unified model of excitable cells is proposed that can be modulated by adrenergic features. By implementing the proposed model, a network of one thousand sparsely coupled cardio-neural network is simulated. The major findings of study include i. cardiac heterogeneity in electrical behavior of cardiac myocytes is the prime factor of heart rate variability ii. Brain-heart interplay through electrical pulses holds the necessary information of brain and heart signals that can be analyzed through spiking neural networks iii. Heart rate variability can be predicted and monitored by spiking neural networks from electrophysiological recordings of brain and heart iv. Heart rate variability related to tachycardia and bradycardia depends upon the polarization protocols of cardiac myocytes during plateau phase of action potential. This study provides the modeling and simulation phase of brain-heart interface to predict the morbidity at early stages. The recent advancements in nano-electronics will make is possible to develop brain-heart interface as nano-chip to deploy in subject to stimulate the brain-heart interplay through electrophysiological signals.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"18"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1007/s12021-024-09698-y
Natalia Filimonova, Maria Specovius-Neugebauer, Elfriede Friedmann
Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.
{"title":"Determination of the Time-frequency Features for Impulse Components in EEG Signals.","authors":"Natalia Filimonova, Maria Specovius-Neugebauer, Elfriede Friedmann","doi":"10.1007/s12021-024-09698-y","DOIUrl":"10.1007/s12021-024-09698-y","url":null,"abstract":"<p><p>Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"17"},"PeriodicalIF":2.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1007/s12021-024-09703-4
S D T Pham, C Chatziantoniou, J T van Vliet, R J van Tuijl, M Bulk, M Costagli, L de Rochefort, O Kraff, M E Ladd, K Pine, I Ronen, J C W Siero, M Tosetti, A Villringer, G J Biessels, J J M Zwanenburg
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (vmean) and velocity PI of SELMA was very similar to the original results (vmean: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (Ndetected: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for Ndetected, vmean, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.
{"title":"Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA).","authors":"S D T Pham, C Chatziantoniou, J T van Vliet, R J van Tuijl, M Bulk, M Costagli, L de Rochefort, O Kraff, M E Ladd, K Pine, I Ronen, J C W Siero, M Tosetti, A Villringer, G J Biessels, J J M Zwanenburg","doi":"10.1007/s12021-024-09703-4","DOIUrl":"10.1007/s12021-024-09703-4","url":null,"abstract":"<p><p>Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (v<sub>mean</sub>) and velocity PI of SELMA was very similar to the original results (v<sub>mean</sub>: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (N<sub>detected</sub>: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for N<sub>detected</sub>, v<sub>mean</sub>, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"11"},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1007/s12021-024-09701-6
K Bhagyalaxmi, B Dwarakanath
Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.
{"title":"CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.","authors":"K Bhagyalaxmi, B Dwarakanath","doi":"10.1007/s12021-024-09701-6","DOIUrl":"https://doi.org/10.1007/s12021-024-09701-6","url":null,"abstract":"<p><p>Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost. To address these challenges, a novel U-Net model for tumour segmentation in magnetic resonance images (MRI) is proposed. Initially, images are claimed from the dataset and pre-processed with the Probabilistic Hybrid Wiener filter (PHWF) to remove unwanted noise and improve image quality. To reduce model complexity, the pre-processed images are submitted to a feature extraction procedure known as 3D Convolutional Vision Transformer (3D-VT). To perform the segmentation approach using chaotic optimization assisted Dilated Channel Gate attention U-Net (CDCG-UNet) model to segment brain tumour regions effectively. The proposed approach segments tumour portions as whole tumour (WT), tumour Core (TC), and Enhancing Tumour (ET) positions. The optimization loss function can be performed using the Chaotic Harris Shrinking Spiral optimization algorithm (CHSOA). The proposed CDCG-UNet model is evaluated with three datasets: BRATS 2021, BRATS 2020, and BRATS 2023. For the BRATS 2021 dataset, the proposed CDCG-UNet model obtained a dice score of 0.972 for ET, 0.987 for CT, and 0.98 for WT. For the BRATS 2020 dataset, the proposed CDCG-UNet model produced a dice score of 98.87% for ET, 98.67% for CT, and 99.1% for WT. The CDCG-UNet model is further evaluated using the BRATS 2023 dataset, which yields 98.42% for ET, 98.08% for CT, and 99.3% for WT.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"12"},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1007/s12021-024-09713-2
Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.
{"title":"Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.","authors":"Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães","doi":"10.1007/s12021-024-09713-2","DOIUrl":"https://doi.org/10.1007/s12021-024-09713-2","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"10"},"PeriodicalIF":2.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}