Structural and biochemical insights into FKBP51 as a Hsp90 co-chaperone.

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of cellular biochemistry Pub Date : 2024-12-01 Epub Date: 2023-02-15 DOI:10.1002/jcb.30384
Asat Baischew, Sarah Engel, Thomas M Geiger, Martha C Taubert, Felix Hausch
{"title":"Structural and biochemical insights into FKBP51 as a Hsp90 co-chaperone.","authors":"Asat Baischew, Sarah Engel, Thomas M Geiger, Martha C Taubert, Felix Hausch","doi":"10.1002/jcb.30384","DOIUrl":null,"url":null,"abstract":"<p><p>The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":" ","pages":"e30384"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcb.30384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 FKBP51 作为 Hsp90 辅伴侣素的结构和生化见解。
FK506 结合蛋白 51(FKBP51)是一种高分子量的嗜免疫蛋白,是治疗应激相关疾病、慢性疼痛和肥胖症的重要药物靶点。它与大量的分子通路有关,但其最大特点仍然是在类固醇激素受体(SHR)成熟周期中作为 Hsp90 的辅助伴侣。然而,FKBP51 调节 SHRs 的机理和结构基础以及与其最接近的同源物 FKBP52 相比通常具有的拮抗功能仍然是个谜。在此,我们回顾了最近关于 FKBPs 作为 Hsp90 机制中的调控因子的结构和生化研究。这些进展为了解 FKBP51 和 FKBP52 在 SHR 调控中的作用提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
期刊最新文献
In Silico and In Vitro Verification of the Effects of Chemotherapeutic Doxorubicin and 5-Fluorouracil in Combination With Curcumin and Vitamin C on MCF-7 Cells. Lactate-Dependent HIF1A Transcriptional Activation Exacerbates Severe Acute Pancreatitis Through the ACSL4/LPCAT3/ALOX15 Pathway Induced Ferroptosis. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. Effective Targeting of Colorectal Cancer Stem Cells by Inducing Differentiation Mediated by Low-Dose Vitamin C via β-Catenin Retention in the Cell Membrane. In Silico Hybridization and Molecular Dynamics Simulations for the Identification of Candidate Human MicroRNAs for Inhibition of Virulent Proteins' Expression in Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1