Mehul Kumar, Mathieu Meode, Michael Blough, Gregory Cairncross, Pinaki Bose
{"title":"PDGF gene expression and p53 alterations contribute to the biology of diffuse astrocytic gliomas.","authors":"Mehul Kumar, Mathieu Meode, Michael Blough, Gregory Cairncross, Pinaki Bose","doi":"10.1038/s41525-023-00351-2","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse, histologically lower grade astrocytomas of adults (LGAs) are classified based on the mutational status of the isocitrate dehydrogenase (IDH) genes. While wild-type (WT) LGAs often evolve quickly to glioblastoma (GBM), mutant tumors typically follow an indolent course. To find possible effectors of these different behaviors, we compared their respective transcriptomes. Unlike mutant LGAs, platelet-derived growth factor (PDGF) signaling was significantly enriched in WT tumors, and PDGFA was the top overexpressed gene in the pathway. Moreover, methylation of the PDGFA and PDGFD promoters emerged as a possible mechanism for their low expression in mutant tumors. Copy number gain of chromosome 7 co-occurred with high expression of PDGFA in WT cases, and high expression of PDGFA was associated with aneuploidy, extracellular matrix (ECM)-related immunosuppressive features and poor prognosis. We also noted that high PDGFA expression in WT cases occurred irrespective of tumor grade and that multiple mechanisms of p53 pathway inactivation accompanied progression to GBM in PDGFA-overexpressing tumors. Conversely, TP53 point mutations were an early and constant feature of mutant LGAs. Our results suggest that members of the PDGF gene family, in concert with different p53 pathway alterations, underlie LGA behaviors.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"8 1","pages":"6"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968280/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-023-00351-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Diffuse, histologically lower grade astrocytomas of adults (LGAs) are classified based on the mutational status of the isocitrate dehydrogenase (IDH) genes. While wild-type (WT) LGAs often evolve quickly to glioblastoma (GBM), mutant tumors typically follow an indolent course. To find possible effectors of these different behaviors, we compared their respective transcriptomes. Unlike mutant LGAs, platelet-derived growth factor (PDGF) signaling was significantly enriched in WT tumors, and PDGFA was the top overexpressed gene in the pathway. Moreover, methylation of the PDGFA and PDGFD promoters emerged as a possible mechanism for their low expression in mutant tumors. Copy number gain of chromosome 7 co-occurred with high expression of PDGFA in WT cases, and high expression of PDGFA was associated with aneuploidy, extracellular matrix (ECM)-related immunosuppressive features and poor prognosis. We also noted that high PDGFA expression in WT cases occurred irrespective of tumor grade and that multiple mechanisms of p53 pathway inactivation accompanied progression to GBM in PDGFA-overexpressing tumors. Conversely, TP53 point mutations were an early and constant feature of mutant LGAs. Our results suggest that members of the PDGF gene family, in concert with different p53 pathway alterations, underlie LGA behaviors.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.