Rethinking 1D convolution for lightweight semantic segmentation.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Neurorobotics Pub Date : 2023-01-01 DOI:10.3389/fnbot.2023.1119231
Chunyu Zhang, Fang Xu, Chengdong Wu, Chenglong Xu
{"title":"Rethinking 1D convolution for lightweight semantic segmentation.","authors":"Chunyu Zhang,&nbsp;Fang Xu,&nbsp;Chengdong Wu,&nbsp;Chenglong Xu","doi":"10.3389/fnbot.2023.1119231","DOIUrl":null,"url":null,"abstract":"<p><p>Lightweight semantic segmentation promotes the application of semantic segmentation in tiny devices. The existing lightweight semantic segmentation network (LSNet) has the problems of low precision and a large number of parameters. In response to the above problems, we designed a full 1D convolutional LSNet. The tremendous success of this network is attributed to the following three modules: 1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC), and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature extraction operations based on the multi-layer perceptron (MLP) idea. This module uses 1D convolutional coding, which is more flexible than MLP. It increases the global information operation, improving features' coding ability. The FA module fuses high-level and low-level semantic information, which solves the problem of precision loss caused by the misalignment of features. We designed a 1D-mixer encoder based on the transformer structure. It performed fusion encoding of the feature space information extracted by the 1D-MS module and the channel information extracted by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very few parameters, which is the key to the network's success. The attention pyramid with FA (AP-FA) uses an AP to decode features and adds a FA module to solve the problem of feature misalignment. Our network requires no pre-training and only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms proves the application value of the network on mobile devices. The results on the three datasets prove that the network generalization ability we designed is powerful. Compared to state-of-the-art lightweight semantic segmentation algorithms, our designed network achieves the best balance between segmentation accuracy and parameters. The parameters of LSNet are only 0.62 M, which is currently the network with the highest segmentation accuracy within 1 M parameters.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1119231"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1119231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight semantic segmentation promotes the application of semantic segmentation in tiny devices. The existing lightweight semantic segmentation network (LSNet) has the problems of low precision and a large number of parameters. In response to the above problems, we designed a full 1D convolutional LSNet. The tremendous success of this network is attributed to the following three modules: 1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC), and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature extraction operations based on the multi-layer perceptron (MLP) idea. This module uses 1D convolutional coding, which is more flexible than MLP. It increases the global information operation, improving features' coding ability. The FA module fuses high-level and low-level semantic information, which solves the problem of precision loss caused by the misalignment of features. We designed a 1D-mixer encoder based on the transformer structure. It performed fusion encoding of the feature space information extracted by the 1D-MS module and the channel information extracted by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very few parameters, which is the key to the network's success. The attention pyramid with FA (AP-FA) uses an AP to decode features and adds a FA module to solve the problem of feature misalignment. Our network requires no pre-training and only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms proves the application value of the network on mobile devices. The results on the three datasets prove that the network generalization ability we designed is powerful. Compared to state-of-the-art lightweight semantic segmentation algorithms, our designed network achieves the best balance between segmentation accuracy and parameters. The parameters of LSNet are only 0.62 M, which is currently the network with the highest segmentation accuracy within 1 M parameters.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新思考一维卷积在轻量级语义分割中的应用。
轻量级语义切分促进了语义切分在微型设备中的应用。现有的轻量级语义分割网络(LSNet)存在精度低、参数多的问题。针对上述问题,我们设计了一个全一维卷积LSNet。该网络的巨大成功归功于以下三个模块:1D多层空间模块(1D- ms)、1D多层通道模块(1D- mc)和流量对准模块(FA)。1D-MS和1D-MC增加了基于多层感知器(MLP)思想的全局特征提取操作。该模块使用1D卷积编码,比MLP更灵活。它增加了全局信息运算,提高了特征的编码能力。分析模块融合了高层和低层语义信息,解决了特征不对齐导致的精度损失问题。我们设计了一个基于变压器结构的1d混频器编码器。将1D-MS模块提取的特征空间信息与1D-MC模块提取的信道信息进行融合编码。一维混频器以极少的参数获得高质量的编码特征,是网络成功的关键。带FA的注意力金字塔(AP-FA)采用AP对特征进行解码,并增加FA模块来解决特征错位问题。我们的网络不需要预训练,只需要一个1080Ti GPU进行训练。它在cityscape数据集上实现了72.6 mIoU和95.6 FPS,在CamVid数据集上实现了70.5 mIoU和122 FPS。我们将在ADE2K数据集上训练的网络移植到移动设备上,224 ms的延迟证明了网络在移动设备上的应用价值。在三个数据集上的实验结果证明了我们所设计的网络具有强大的泛化能力。与目前最先进的轻量级语义分割算法相比,我们设计的网络在分割精度和参数之间达到了最好的平衡。LSNet的参数仅为0.62 M,是目前1m参数内分割精度最高的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
期刊最新文献
A multimodal educational robots driven via dynamic attention. LS-VIT: Vision Transformer for action recognition based on long and short-term temporal difference. Neuro-motor controlled wearable augmentations: current research and emerging trends. Editorial: Assistive and service robots for health and home applications (RH3 - Robot Helpers in Health and Home). A modified A* algorithm combining remote sensing technique to collect representative samples from unmanned surface vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1