Knockdown of Circular RNAs Using LNA-Modified Antisense Oligonucleotides.

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic acid therapeutics Pub Date : 2023-01-01 DOI:10.1089/nat.2022.0040
Marianne Bengtson Løvendorf, Anja Holm, Andreas Petri, Charlotte Albæk Thrue, Shizuka Uchida, Morten T Venø, Sakari Kauppinen
{"title":"Knockdown of Circular RNAs Using LNA-Modified Antisense Oligonucleotides.","authors":"Marianne Bengtson Løvendorf,&nbsp;Anja Holm,&nbsp;Andreas Petri,&nbsp;Charlotte Albæk Thrue,&nbsp;Shizuka Uchida,&nbsp;Morten T Venø,&nbsp;Sakari Kauppinen","doi":"10.1089/nat.2022.0040","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs <i>in vitro</i> and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 1","pages":"45-57"},"PeriodicalIF":4.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2022.0040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs in vitro and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用rna修饰的反义寡核苷酸敲低环状rna。
环状RNA (circRNAs)是一类丰富的共价封闭非编码RNA分子,由真核蛋白编码基因反剪接形成。最近的研究表明,circRNAs可以作为microRNA或蛋白质诱饵,以及转录调节因子。然而,大多数circrna的功能仍然知之甚少。由于circRNA序列与其线性亲本转录物重叠,在不影响宿主基因表达的情况下消耗特定的circRNA仍然是一个挑战。在这项研究中,我们评估了rna修饰的反义寡核苷酸(ASOs)在功能丧失研究中敲低环状rna的效用。我们发现,虽然大多数依赖RNase h的间隙子ASOs介导其靶环状rna的有效敲低,但一些间隙子降低了线性亲本转录物的水平。使用设计优化的gapmer ASOs可以增强circRNA靶向特异性,这些ASOs显示出有效和特异性的circRNA敲除,对宿主基因的影响最小。总之,我们的研究结果表明,与后剪接连接序列互补的na修饰ASOs在体外介导环状rna的强敲低,因此,在培养细胞和动物模型中探索环状rna在功能丧失研究中的生物学作用是一种有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
期刊最新文献
A Combined Fertility and Developmental Toxicity Study with an Antisense Oligonucleotide Targeting Murine Apolipoprotein C-III mRNA in Mice. It is Time to Revisit miRNA Therapeutics. Characterization of the TLR9-Activating Potential of LNA-Modified Antisense Oligonucleotides. Peptide Nucleic Acid-Mediated Regulation of CRISPR-Cas9 Specificity. Levels of Exon-Skipping Are Not Artificially Overestimated Because of the Increased Affinity of Tricyclo-DNA-Modified Antisense Oligonucleotides to the Target DMD Exon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1