Patrik Andersson, Sebastien A Burel, Heather Estrella, Jeffrey Foy, Peter H Hagedorn, Tod A Harper, Scott P Henry, Jean-Christophe Hoflack, Erle M Holgersen, Arthur A Levin, Eliot Morrison, Adam Pavlicek, Luca Penso-Dolfin, Utsav Saxena
{"title":"Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations.","authors":"Patrik Andersson, Sebastien A Burel, Heather Estrella, Jeffrey Foy, Peter H Hagedorn, Tod A Harper, Scott P Henry, Jean-Christophe Hoflack, Erle M Holgersen, Arthur A Levin, Eliot Morrison, Adam Pavlicek, Luca Penso-Dolfin, Utsav Saxena","doi":"10.1089/nat.2024.0072","DOIUrl":null,"url":null,"abstract":"<p><p>Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through <i>in silico</i> complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) <i>in vitro</i> verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2024.0072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through in silico complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) in vitro verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.