O V Tinkov, V Y Grigorev, L D Grigoreva, V N Osipov
{"title":"HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors.","authors":"O V Tinkov, V Y Grigorev, L D Grigoreva, V N Osipov","doi":"10.1080/1062936X.2022.2147996","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC<sub>50</sub> = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"33 12","pages":"915-931"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2147996","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC50 = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.