HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-12-01 DOI:10.1080/1062936X.2022.2147996
O V Tinkov, V Y Grigorev, L D Grigoreva, V N Osipov
{"title":"HDAC1 PREDICTOR: a simple and transparent application for virtual screening of histone deacetylase 1 inhibitors.","authors":"O V Tinkov,&nbsp;V Y Grigorev,&nbsp;L D Grigoreva,&nbsp;V N Osipov","doi":"10.1080/1062936X.2022.2147996","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC<sub>50</sub> = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2022.2147996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Histone deacetylases play an important role in regulating gene expression by modifying histones and changing chromatin conformation. HDAC dysregulation is involved in many diseases, such as cancer, autoimmune and neurodegenerative diseases. Histone deacetylase 1 (HDAC1) inhibitors represent an important class of drugs. Quantitative Structure-Activity Relationship (QSAR) classification models were developed using 2D RDKit molecular descriptors; ECPF4 (Extended Connectivity Fingerprint) circular fingerprints; and the Random Forest, Gradient Boosting, and Support Vector Machine methods. The developed models were integrated into the HDAC1 PREDICTOR application, which is freely available at the link https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com. The HDAC1 PREDICTOR web application allows one to reveal the compounds for which the predicted activity to inhibit HDAC1 is higher than that of the reference Vorinostat compound (IC50 = 11.08 nM). The algorithm implemented in HDAC1 PREDICTOR for determining the contributions of molecular fragments to the inhibitory activity can be used to find the molecule segments that increase or decrease the activity, enabling the researcher to conduct a rational molecular design of new highly active HDAC1 inhibitors. The developed QSAR models and the code for their construction in the Python programming language are freely available on the GitHub platform at https://github.com/ovttiras/HDAC1-inhibitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDAC1预测器:一种简单透明的应用程序,用于组蛋白去乙酰化酶1抑制剂的虚拟筛选。
组蛋白去乙酰化酶通过修饰组蛋白和改变染色质构象在调节基因表达中发挥重要作用。HDAC失调与许多疾病有关,如癌症、自身免疫性疾病和神经退行性疾病。组蛋白去乙酰化酶1 (HDAC1)抑制剂是一类重要的药物。利用二维RDKit分子描述符建立定量构效关系(QSAR)分类模型;ECPF4(扩展连接指纹)圆形指纹;以及随机森林、梯度增强和支持向量机方法。开发的模型被集成到HDAC1 PREDICTOR应用程序中,该应用程序可在链接https://ovttiras-hdac1-inhibitors-hdac1-predictor-app-z3mrbr.streamlitapp.com上免费获得。HDAC1 PREDICTOR web应用程序允许人们揭示预测抑制HDAC1活性高于参考Vorinostat化合物的化合物(IC50 = 11.08 nM)。在HDAC1 PREDICTOR中实现的用于确定分子片段对抑制活性贡献的算法可以用来找到增加或减少活性的分子片段,使研究人员能够对新的高活性HDAC1抑制剂进行合理的分子设计。开发的QSAR模型及其用Python编程语言构建的代码可以在GitHub平台上免费获得,网址为https://github.com/ovttiras/HDAC1-inhibitors。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1