Corinne Jankovsky, Oksana Tsinman, Naveen K Thakral
{"title":"Food effect risk assessment in preformulation stage using material sparing μFLUX methodology.","authors":"Corinne Jankovsky, Oksana Tsinman, Naveen K Thakral","doi":"10.5599/admet.1476","DOIUrl":null,"url":null,"abstract":"<p><p>The intake of food and meal type can strongly impact the bioavailability of orally administered drugs and can consequently impact drug efficacy and safety. During the early stages of drug development, only a small amount of drug substance is available, and the solubility difference between fasted state simulated intestinal fluid and fed state simulated intestinal fluid may provide an early indication about the probable food effect. But higher drug solubility in fed state simulated intestinal fluid may not always results in an increased oral absorption. In the present research, we demonstrated using 11 model compounds that in addition to the drug dissolution in biorelevant media, the evaluation of the diffusion flux of a drug in solution, across artificial lipid coated membrane, where only the unbound drug crosses the membrane, is a reliable way to predict the food effect. Although, the combination of dissolution and diffusion flux may not reliably predict the food effect in case of drugs undergoing intestinal metabolism or when transporters are involved in the drug absorption, the technique generally provides good information about the food effect at very early stages of drug development that may help in designing a clinical plan by adjusting the drug dose in the fed state.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"10 4","pages":"299-314"},"PeriodicalIF":3.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793460/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.1476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 2
Abstract
The intake of food and meal type can strongly impact the bioavailability of orally administered drugs and can consequently impact drug efficacy and safety. During the early stages of drug development, only a small amount of drug substance is available, and the solubility difference between fasted state simulated intestinal fluid and fed state simulated intestinal fluid may provide an early indication about the probable food effect. But higher drug solubility in fed state simulated intestinal fluid may not always results in an increased oral absorption. In the present research, we demonstrated using 11 model compounds that in addition to the drug dissolution in biorelevant media, the evaluation of the diffusion flux of a drug in solution, across artificial lipid coated membrane, where only the unbound drug crosses the membrane, is a reliable way to predict the food effect. Although, the combination of dissolution and diffusion flux may not reliably predict the food effect in case of drugs undergoing intestinal metabolism or when transporters are involved in the drug absorption, the technique generally provides good information about the food effect at very early stages of drug development that may help in designing a clinical plan by adjusting the drug dose in the fed state.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study