Background and purpose: Methotrexate (MTX) is a widely used anti-cancer drug, but its overuse can lead to significant side effects. Therefore, it is very vital to design simple and sensitive analytical methods for its determination.
Experimental approach: In this work, an electrochemical sensor was prepared based on an ionic liquid (IL)/Ni-Co layered double hydroxide nanosheets (Ni-Co-LDH)-modified carbon paste electrode IL/Ni-Co-LDH/CPE. Cyclic voltammetry, differential pulse voltammetry, and chronoamperometry methods were applied to evaluate the performance of the designed sensor for MTX determination.
Key results: The IL/Ni-Co-LDH/CPE sensor exhibits a linear relationship between the peak current of the differential pulse voltammetry and MTX concentrations in the linear dynamic range of 0.02 to 140.0 μM, with a detection limit of 0.006 μM. The IL/Ni-Co-LDH/CPE sensor exhibited relative standard deviation values between 1.7 to 3.7 % for recovery tests on real samples, indicating the precision of the method.
Conclusion: The designed sensor with cost-effective and good performance could be valuable for therapeutic drug monitoring and clinical diagnostics.