{"title":"Discovery, classification, evolution and diversity of Siglecs","authors":"Takashi Angata , Ajit Varki","doi":"10.1016/j.mam.2022.101117","DOIUrl":null,"url":null,"abstract":"<div><p>Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host–microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences—beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905256/pdf/","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Aspects of Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098299722000620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 14
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host–microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences—beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
期刊介绍:
Molecular Aspects of Medicine is a review journal that serves as an official publication of the International Union of Biochemistry and Molecular Biology. It caters to physicians and biomedical scientists and aims to bridge the gap between these two fields. The journal encourages practicing clinical scientists to contribute by providing extended reviews on the molecular aspects of a specific medical field. These articles are written in a way that appeals to both doctors who may struggle with basic science and basic scientists who may have limited awareness of clinical practice issues. The journal covers a wide range of medical topics to showcase the molecular insights gained from basic science and highlight the challenging problems that medicine presents to the scientific community.