Pub Date : 2025-02-01Epub Date: 2025-01-09DOI: 10.1016/j.mam.2025.101337
Stefano Gianni, Maurizio Brunori
Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation. We discuss the energetic interplay between domains, highlighting particularly the cases where domain interactions lead to transient misfolded intermediates. These interactions can result in diverse effects, including cooperative folding and domain-specific perturbations, which are particularly relevant to the pathogenesis of neurodegenerative diseases like polyglutamine disorders. The review underscores the critical need to understand multidomain folding, to better comprehend and potentially mitigate the molecular underpinnings of protein misfolding diseases.
{"title":"The folding and misfolding of multidomain proteins.","authors":"Stefano Gianni, Maurizio Brunori","doi":"10.1016/j.mam.2025.101337","DOIUrl":"10.1016/j.mam.2025.101337","url":null,"abstract":"<p><p>Protein folding represents a vital process for any living organism. While significant insights have been gained from studying single-domain proteins, our current knowledge on the folding mechanisms of multidomain proteins remains relatively limited, primarily due to their inherent complexity. The principal aim of this review lies in summarizing the emerging view pertaining multi-domain folding, emphasizing their modular nature, which minimizes misfolding and facilitates evolutionary innovation. We discuss the energetic interplay between domains, highlighting particularly the cases where domain interactions lead to transient misfolded intermediates. These interactions can result in diverse effects, including cooperative folding and domain-specific perturbations, which are particularly relevant to the pathogenesis of neurodegenerative diseases like polyglutamine disorders. The review underscores the critical need to understand multidomain folding, to better comprehend and potentially mitigate the molecular underpinnings of protein misfolding diseases.</p>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"101 ","pages":"101337"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-03DOI: 10.1016/j.mam.2024.101324
Francesca Ruzzi, Federica Riccardo, Laura Conti, Lidia Tarone, Maria Sofia Semprini, Elisabetta Bolli, Giuseppina Barutello, Elena Quaglino, Pier-Luigi Lollini, Federica Cavallo
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
{"title":"Cancer vaccines: Target antigens, vaccine platforms and preclinical models.","authors":"Francesca Ruzzi, Federica Riccardo, Laura Conti, Lidia Tarone, Maria Sofia Semprini, Elisabetta Bolli, Giuseppina Barutello, Elena Quaglino, Pier-Luigi Lollini, Federica Cavallo","doi":"10.1016/j.mam.2024.101324","DOIUrl":"10.1016/j.mam.2024.101324","url":null,"abstract":"<p><p>This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.</p>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"101 ","pages":"101324"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-04DOI: 10.1016/j.mam.2024.101336
Akmaral Baspakova, Afshin Zare, Roza Suleimenova, Aidar B Berdygaliev, Bibigul Karimsakova, Kymbat Tussupkaliyeva, Nadiar M Mussin, Kulyash R Zhilisbayeva, Nader Tanideh, Amin Tamadon
Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis. Furthermore, the present study displayed that AP-2 complex subunit mu-1 (AP2M1), Asialoglycoprotein receptor 2 (ASGR2), Bax inhibitor-1 (BI-1), and Ferritin Heavy Chain, and pivotal role in the progression of cancers mediated by MPs. Moreover, our in-silico analysis identified Goserelin, Paclitaxel, Raloxifene, Exemestane, Epirubicin, Trametinib, Vemurafenib, Pactitaxel, and Sorafenib as potential anticancer agents for curing MPS-based cancer. Besides, our results demonstrated that MPs can exacerbate the development of tumor cells by affecting some important mechanisms including oxidative stress, immune suppression, and adjusting of critical signaling pathways. Interestingly, some sorts of MPs also displayed suppressive effects on cancer cells in some particular contexts, highlighting their complicated biological roles in different biological interactions. Ultimately the present survey tries to demonstrate the crucial roles of MPs in cancer cells and the different mechanisms that occur in the mentioned cells in order to emphasize performing more studies about clarifying the roles of MPs in carcinogenesis.
{"title":"An updated systematic review about various effects of microplastics on cancer: A pharmacological and in-silico based analysis.","authors":"Akmaral Baspakova, Afshin Zare, Roza Suleimenova, Aidar B Berdygaliev, Bibigul Karimsakova, Kymbat Tussupkaliyeva, Nadiar M Mussin, Kulyash R Zhilisbayeva, Nader Tanideh, Amin Tamadon","doi":"10.1016/j.mam.2024.101336","DOIUrl":"10.1016/j.mam.2024.101336","url":null,"abstract":"<p><p>Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis. Furthermore, the present study displayed that AP-2 complex subunit mu-1 (AP2M1), Asialoglycoprotein receptor 2 (ASGR2), Bax inhibitor-1 (BI-1), and Ferritin Heavy Chain, and pivotal role in the progression of cancers mediated by MPs. Moreover, our in-silico analysis identified Goserelin, Paclitaxel, Raloxifene, Exemestane, Epirubicin, Trametinib, Vemurafenib, Pactitaxel, and Sorafenib as potential anticancer agents for curing MPS-based cancer. Besides, our results demonstrated that MPs can exacerbate the development of tumor cells by affecting some important mechanisms including oxidative stress, immune suppression, and adjusting of critical signaling pathways. Interestingly, some sorts of MPs also displayed suppressive effects on cancer cells in some particular contexts, highlighting their complicated biological roles in different biological interactions. Ultimately the present survey tries to demonstrate the crucial roles of MPs in cancer cells and the different mechanisms that occur in the mentioned cells in order to emphasize performing more studies about clarifying the roles of MPs in carcinogenesis.</p>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"101 ","pages":"101336"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-13DOI: 10.1016/j.mam.2024.101334
Federica Cavallo, Pier-Luigi Lollini
{"title":"Vaccines for cancer prevention and treatment.","authors":"Federica Cavallo, Pier-Luigi Lollini","doi":"10.1016/j.mam.2024.101334","DOIUrl":"10.1016/j.mam.2024.101334","url":null,"abstract":"","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":" ","pages":"101334"},"PeriodicalIF":8.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
{"title":"The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy.","authors":"Deqian Xie, Guandu Li, Zunwen Zheng, Xiaoman Zhang, Shijin Wang, Bowen Jiang, Xiaorui Li, Xiaoxi Wang, Guangzhen Wu","doi":"10.1016/j.mam.2024.101335","DOIUrl":"https://doi.org/10.1016/j.mam.2024.101335","url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.</p>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"101 ","pages":"101335"},"PeriodicalIF":8.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.mam.2024.101323
Shu-Yun Li , Sudeep Kumar , Xiaowei Gu , Tony DeFalco
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
{"title":"Testicular immunity","authors":"Shu-Yun Li , Sudeep Kumar , Xiaowei Gu , Tony DeFalco","doi":"10.1016/j.mam.2024.101323","DOIUrl":"10.1016/j.mam.2024.101323","url":null,"abstract":"<div><div>The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"100 ","pages":"Article 101323"},"PeriodicalIF":8.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.mam.2024.101322
Fernando Millan-Domingo , Esther Garcia-Dominguez , Juan Gambini , Gloria Olaso-Gonzalez , Jose Viña , Maria Carmen Gomez-Cabrera
Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process “per se”, chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia.
In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.
{"title":"Diet and exercise in frailty and sarcopenia. Molecular aspects","authors":"Fernando Millan-Domingo , Esther Garcia-Dominguez , Juan Gambini , Gloria Olaso-Gonzalez , Jose Viña , Maria Carmen Gomez-Cabrera","doi":"10.1016/j.mam.2024.101322","DOIUrl":"10.1016/j.mam.2024.101322","url":null,"abstract":"<div><div>Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process “per se”, chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia.</div><div>In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"100 ","pages":"Article 101322"},"PeriodicalIF":8.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.mam.2024.101321
Mariana Weigel Muñoz, Débora J. Cohen, Vanina G. Da Ros, Soledad N. González, Abril Rebagliati Cid, Valeria Sulzyk, Patricia S. Cuasnicu
In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm in vitro and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.
{"title":"Physiological and pathological aspects of epididymal sperm maturation","authors":"Mariana Weigel Muñoz, Débora J. Cohen, Vanina G. Da Ros, Soledad N. González, Abril Rebagliati Cid, Valeria Sulzyk, Patricia S. Cuasnicu","doi":"10.1016/j.mam.2024.101321","DOIUrl":"10.1016/j.mam.2024.101321","url":null,"abstract":"<div><div>In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm <em>in vitro</em> and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"100 ","pages":"Article 101321"},"PeriodicalIF":8.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.mam.2024.101320
Anna-Lisa V. Nguyen , Sania Julian , Ninglu Weng , Ryan Flannigan
Recent advances surrounding in vitro spermatogenesis (IVS) have shown potential in creating a new paradigm of regenerative medicine in the future of fertility treatments for males experiencing non-obstructive azoospermia (NOA). Male infertility is a common condition affecting approximately 15% of couples, with azoospermia being present in 15% of infertile males (Cocuzza et al., 2013; Esteves et al., 2011a). Treatment for patients with NOA has primarily been limited to surgical sperm retrieval combined with in vitro fertilization intracytoplasmic sperm injection (IVF-ICSI); however, sperm retrieval is successful in only half of these patients, and live birth rates typically range between 10 and 25% (Aljubran et al., 2022). Therefore, a significant need exists for regenerative therapies in this patient population.
IVS has been considered as a model for further understanding the molecular and cellular processes of spermatogenesis and as a potential regenerative therapeutic approach. While 2D cell cultures using human testicular cells have been attempted in previous research, lack of proper spatial arrangement limits germ cell differentiation and maturation, posing challenges for clinical application. Recent research suggests that 3D technology may have advantages for IVS due to mimicry of the native cytoarchitecture of human testicular tissue along with cell-cell communication directly or indirectly. 3D organotypic cultures, scaffolds, organoids, microfluidics, testis-on-a-chip, and bioprinting techniques have all shown potential to contribute to the technology of regenerative treatment strategies, including in vitro fertilization (IVF).
Although promising, further work is needed to develop technology for successful, replicable, and safe IVS for humans. The intersection between tissue engineering, molecular biology, and reproductive medicine in IVS development allows for multidisciplinary involvement, where challenges can be overcome to realize regenerative therapies as a viable option.
{"title":"Advances in human In vitro spermatogenesis: A review","authors":"Anna-Lisa V. Nguyen , Sania Julian , Ninglu Weng , Ryan Flannigan","doi":"10.1016/j.mam.2024.101320","DOIUrl":"10.1016/j.mam.2024.101320","url":null,"abstract":"<div><div>Recent advances surrounding in vitro spermatogenesis (IVS) have shown potential in creating a new paradigm of regenerative medicine in the future of fertility treatments for males experiencing non-obstructive azoospermia (NOA). Male infertility is a common condition affecting approximately 15% of couples, with azoospermia being present in 15% of infertile males (Cocuzza et al., 2013; Esteves et al., 2011a). Treatment for patients with NOA has primarily been limited to surgical sperm retrieval combined with in vitro fertilization intracytoplasmic sperm injection (IVF-ICSI); however, sperm retrieval is successful in only half of these patients, and live birth rates typically range between 10 and 25% (Aljubran et al., 2022). Therefore, a significant need exists for regenerative therapies in this patient population.</div><div>IVS has been considered as a model for further understanding the molecular and cellular processes of spermatogenesis and as a potential regenerative therapeutic approach. While 2D cell cultures using human testicular cells have been attempted in previous research, lack of proper spatial arrangement limits germ cell differentiation and maturation, posing challenges for clinical application. Recent research suggests that 3D technology may have advantages for IVS due to mimicry of the native cytoarchitecture of human testicular tissue along with cell-cell communication directly or indirectly. 3D organotypic cultures, scaffolds, organoids, microfluidics, testis-on-a-chip, and bioprinting techniques have all shown potential to contribute to the technology of regenerative treatment strategies, including in vitro fertilization (IVF).</div><div>Although promising, further work is needed to develop technology for successful, replicable, and safe IVS for humans. The intersection between tissue engineering, molecular biology, and reproductive medicine in IVS development allows for multidisciplinary involvement, where challenges can be overcome to realize regenerative therapies as a viable option.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"100 ","pages":"Article 101320"},"PeriodicalIF":8.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-22DOI: 10.1016/j.mam.2024.101319
Mercedes Grima-Terrén , Silvia Campanario , Ignacio Ramírez-Pardo , Andrés Cisneros , Xiaotong Hong , Eusebio Perdiguero , Antonio L. Serrano , Joan Isern , Pura Muñoz-Cánoves
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
{"title":"Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets","authors":"Mercedes Grima-Terrén , Silvia Campanario , Ignacio Ramírez-Pardo , Andrés Cisneros , Xiaotong Hong , Eusebio Perdiguero , Antonio L. Serrano , Joan Isern , Pura Muñoz-Cánoves","doi":"10.1016/j.mam.2024.101319","DOIUrl":"10.1016/j.mam.2024.101319","url":null,"abstract":"<div><div>Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.</div></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":"100 ","pages":"Article 101319"},"PeriodicalIF":8.7,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}