Qiaobin Hu, Fang Zhou, Ngoc Kim Ly, Jerryck Ordyna, Tiffany Peterson, Zhaoyang Fan* and Shu Wang*,
{"title":"Development of Multifunctional Nanoencapsulated trans-Resveratrol/Chitosan Nutraceutical Edible Coating for Strawberry Preservation","authors":"Qiaobin Hu, Fang Zhou, Ngoc Kim Ly, Jerryck Ordyna, Tiffany Peterson, Zhaoyang Fan* and Shu Wang*, ","doi":"10.1021/acsnano.3c01094","DOIUrl":null,"url":null,"abstract":"<p >Phytochemical nanoencapsulation for nutrient delivery and edible coatings for perishable food preservation are two emerging technologies. Leveraging the strong antimicrobial function of phytochemical nutrients, we propose convergent research to integrate the two technologies by embedding phytochemical-encapsulated nanoparticles in an edible coating on fresh fruits to achieve multiple functions. In particular, we report the study of an edible coating on strawberries that is composited of <i>trans</i>-resveratrol (R)-encapsulated nanoparticles (RNPs) embedded in a chitosan (CS) matrix. The biodegradable and biocompatible RNPs significantly increased the aqueous solubility of R by 150-fold and bioavailability by 3.5-fold after oral administration. Our results demonstrated the abilities of the RNP-embedded CS edible coating to diminish dehydration, prevent nutrient loss, inhibit microbe growth, increase nutraceutical value, preserve strawberry quality, and extend shelf life during storage at both 22 and 4 °C. Such a phytochemical nanoencapsulation-based edible coating is promising for the dual purposes of enhancing nutrient delivery and preserving perishable foods.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c01094","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Phytochemical nanoencapsulation for nutrient delivery and edible coatings for perishable food preservation are two emerging technologies. Leveraging the strong antimicrobial function of phytochemical nutrients, we propose convergent research to integrate the two technologies by embedding phytochemical-encapsulated nanoparticles in an edible coating on fresh fruits to achieve multiple functions. In particular, we report the study of an edible coating on strawberries that is composited of trans-resveratrol (R)-encapsulated nanoparticles (RNPs) embedded in a chitosan (CS) matrix. The biodegradable and biocompatible RNPs significantly increased the aqueous solubility of R by 150-fold and bioavailability by 3.5-fold after oral administration. Our results demonstrated the abilities of the RNP-embedded CS edible coating to diminish dehydration, prevent nutrient loss, inhibit microbe growth, increase nutraceutical value, preserve strawberry quality, and extend shelf life during storage at both 22 and 4 °C. Such a phytochemical nanoencapsulation-based edible coating is promising for the dual purposes of enhancing nutrient delivery and preserving perishable foods.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.