Cloud-Based Advanced Shuffled Frog Leaping Algorithm for Tasks Scheduling.
IF 2.6 4区 计算机科学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONSBig DataPub Date : 2024-04-01Epub Date: 2023-03-03DOI:10.1089/big.2022.0095
Dipesh Kumar, Nirupama Mandal, Yugal Kumar
{"title":"Cloud-Based Advanced Shuffled Frog Leaping Algorithm for Tasks Scheduling.","authors":"Dipesh Kumar, Nirupama Mandal, Yugal Kumar","doi":"10.1089/big.2022.0095","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the world has seen incremental growth in online activities owing to which the volume of data in cloud servers has also been increasing exponentially. With rapidly increasing data, load on cloud servers has increased in the cloud computing environment. With rapidly evolving technology, various cloud-based systems were developed to enhance the user experience. But, the increased online activities around the globe have also increased data load on the cloud-based systems. To maintain the efficiency and performance of the applications hosted in cloud servers, task scheduling has become very important. The task scheduling process helps in reducing the makespan time and average cost by scheduling the tasks to virtual machines (VMs). The task scheduling depends on assigning tasks to VMs to process the incoming tasks. The task scheduling should follow some algorithm for assigning tasks to VMs. Many researchers have proposed different scheduling algorithms for task scheduling in the cloud computing environment. In this article, an advanced form of the shuffled frog optimization algorithm, which works on the nature and behavior of frogs searching for food, has been proposed. The authors have introduced a new algorithm to shuffle the position of frogs in memeplex to obtain the best result. By using this optimization technique, the cost function of the central processing unit, makespan, and fitness function were calculated. The fitness function is the sum of the budget cost function and the makespan time. The proposed method helps in reducing the makespan time as well as the average cost by scheduling the tasks to VMs effectively. Finally, the performance of the proposed advanced shuffled frog optimization method is compared with existing task scheduling methods such as whale optimization-based scheduler (W-Scheduler), sliced particle swarm optimization (SPSO-SA), inverted ant colony optimization algorithm, and static learning particle swarm optimization (SLPSO-SA) in terms of average cost and metric makespan. Experimentally, it was concluded that the proposed advanced frog optimization algorithm can schedule tasks to the VMs more effectively as compared with other scheduling methods with a makespan of 6, average cost of 4, and fitness of 10.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"110-126"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0095","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the world has seen incremental growth in online activities owing to which the volume of data in cloud servers has also been increasing exponentially. With rapidly increasing data, load on cloud servers has increased in the cloud computing environment. With rapidly evolving technology, various cloud-based systems were developed to enhance the user experience. But, the increased online activities around the globe have also increased data load on the cloud-based systems. To maintain the efficiency and performance of the applications hosted in cloud servers, task scheduling has become very important. The task scheduling process helps in reducing the makespan time and average cost by scheduling the tasks to virtual machines (VMs). The task scheduling depends on assigning tasks to VMs to process the incoming tasks. The task scheduling should follow some algorithm for assigning tasks to VMs. Many researchers have proposed different scheduling algorithms for task scheduling in the cloud computing environment. In this article, an advanced form of the shuffled frog optimization algorithm, which works on the nature and behavior of frogs searching for food, has been proposed. The authors have introduced a new algorithm to shuffle the position of frogs in memeplex to obtain the best result. By using this optimization technique, the cost function of the central processing unit, makespan, and fitness function were calculated. The fitness function is the sum of the budget cost function and the makespan time. The proposed method helps in reducing the makespan time as well as the average cost by scheduling the tasks to VMs effectively. Finally, the performance of the proposed advanced shuffled frog optimization method is compared with existing task scheduling methods such as whale optimization-based scheduler (W-Scheduler), sliced particle swarm optimization (SPSO-SA), inverted ant colony optimization algorithm, and static learning particle swarm optimization (SLPSO-SA) in terms of average cost and metric makespan. Experimentally, it was concluded that the proposed advanced frog optimization algorithm can schedule tasks to the VMs more effectively as compared with other scheduling methods with a makespan of 6, average cost of 4, and fitness of 10.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.