{"title":"Machine learning algorithms for the diagnosis of Alzheimer and Parkinson disease.","authors":"Nancy Noella R S, Priyadarshini J","doi":"10.1080/03091902.2022.2097326","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia is a general term used to indicate any disorder related to human memory. The various memory-related problems severely affect the human brain and so the individual feels difficulty in doing their normal physical as well as mental activities. There are different types of dementia that exist, but the commonly seen and fatal types of dementia are Alzheimer's disease (AD) and Parkinson's disease (PD). In this paper different efficient Machine Learning Techniques are selected analysed their behaviours in the diagnosis of AD and PD using Positron Emission Tomography (PET). The PET image dataset used in this work consists of 1050 images with AD, PD and Healthy Brain images. The total number of images is split into two different categories in the ratio of 7:3 for training and testing respectively. The different machine learning classifiers used are Bagged Ensemble, ID3, Naive Bayes and Multiclass Support Vector Machine. The classification of the AD and PD with the reference of a healthy brain is done by comparing the input image with the trained samples in the PET image database. In the comparison of trained samples with the input image for the PET images, the bagged ensemble learning classifier worked better than the other classification algorithms and yielded an accuracy of 90.3%.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 1","pages":"35-43"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2022.2097326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
Dementia is a general term used to indicate any disorder related to human memory. The various memory-related problems severely affect the human brain and so the individual feels difficulty in doing their normal physical as well as mental activities. There are different types of dementia that exist, but the commonly seen and fatal types of dementia are Alzheimer's disease (AD) and Parkinson's disease (PD). In this paper different efficient Machine Learning Techniques are selected analysed their behaviours in the diagnosis of AD and PD using Positron Emission Tomography (PET). The PET image dataset used in this work consists of 1050 images with AD, PD and Healthy Brain images. The total number of images is split into two different categories in the ratio of 7:3 for training and testing respectively. The different machine learning classifiers used are Bagged Ensemble, ID3, Naive Bayes and Multiclass Support Vector Machine. The classification of the AD and PD with the reference of a healthy brain is done by comparing the input image with the trained samples in the PET image database. In the comparison of trained samples with the input image for the PET images, the bagged ensemble learning classifier worked better than the other classification algorithms and yielded an accuracy of 90.3%.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.