{"title":"Comparative study of DCNN and image processing based classification of chest X-rays for identification of COVID-19 patients using fine-tuning.","authors":"Amitesh Badkul, Inturi Vamsi, Radhika Sudha","doi":"10.1080/03091902.2024.2438158","DOIUrl":null,"url":null,"abstract":"<p><p>The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the chest X-ray images (CXR) with the deep convolutional neural network (DCNN) models through a fine-tuning and pre-training approach. CXR images pertaining to four health scenarios, namely, healthy, COVID-19, bacterial pneumonia and viral pneumonia, are considered and subjected to data augmentation. Two types of input datasets are prepared; in which dataset I contains the original image dataset categorised under four classes, whereas the original CXR images are subjected to image pre-processing <i>via</i> Contrast Limited Adaptive Histogram Equalisation (CLAHE) algorithm and Blackhat Morphological Operation (BMO) for devising the input dataset II. Both datasets are supplied as input to various DCNN models such as DenseNet, MobileNet, ResNet, VGG16, and Xception for achieving multi-class classification. It is observed that the classification accuracies are improved, and the classification errors are reduced with the image pre-processing. Overall, the VGG16 model resulted in better classification accuracies and reduced classification errors while accomplishing multi-class classification. Thus, the proposed work would assist the clinical diagnosis, and reduce the workload of the front-line healthcare workforce and medical professionals.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"213-222"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2438158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the chest X-ray images (CXR) with the deep convolutional neural network (DCNN) models through a fine-tuning and pre-training approach. CXR images pertaining to four health scenarios, namely, healthy, COVID-19, bacterial pneumonia and viral pneumonia, are considered and subjected to data augmentation. Two types of input datasets are prepared; in which dataset I contains the original image dataset categorised under four classes, whereas the original CXR images are subjected to image pre-processing via Contrast Limited Adaptive Histogram Equalisation (CLAHE) algorithm and Blackhat Morphological Operation (BMO) for devising the input dataset II. Both datasets are supplied as input to various DCNN models such as DenseNet, MobileNet, ResNet, VGG16, and Xception for achieving multi-class classification. It is observed that the classification accuracies are improved, and the classification errors are reduced with the image pre-processing. Overall, the VGG16 model resulted in better classification accuracies and reduced classification errors while accomplishing multi-class classification. Thus, the proposed work would assist the clinical diagnosis, and reduce the workload of the front-line healthcare workforce and medical professionals.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.