{"title":"Comparative Effectiveness Research using Bayesian Adaptive Designs for Rare Diseases: Response Adaptive Randomization Reusing Participants.","authors":"Fengming Tang, Byron J Gajewski","doi":"10.1080/19466315.2021.1961854","DOIUrl":null,"url":null,"abstract":"<p><p>Slow accrual rate is a major challenge in clinical trials for rare diseases and is identified as the most frequent reason for clinical trials to fail. This challenge is amplified in comparative effectiveness research where multiple treatments are compared to identify the best treatment. Novel efficient clinical trial designs are in urgent need in these areas. Our proposed response adaptive randomization (RAR) reusing participants trial design mimics the real-world clinical practice that allows patients to switch treatments when desired outcome is not achieved. The proposed design increases efficiency by two strategies: 1) Allowing participants to switch treatments so that each participant can have more than one observation and hence it is possible to control for participant specific variability to increase statistical power; and 2) Utilizing RAR to allocate more participants to the promising arms such that ethical and efficient studies will be achieved. Extensive simulations were conducted and showed that, compared with trials where each participant receives one treatment, the proposed participants reusing RAR design can achieve comparable power with a smaller sample size and a shorter trial duration, especially when the accrual rate is low. The efficiency gain decreases as the accrual rate increases.</p>","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"154-163"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19466315.2021.1961854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Slow accrual rate is a major challenge in clinical trials for rare diseases and is identified as the most frequent reason for clinical trials to fail. This challenge is amplified in comparative effectiveness research where multiple treatments are compared to identify the best treatment. Novel efficient clinical trial designs are in urgent need in these areas. Our proposed response adaptive randomization (RAR) reusing participants trial design mimics the real-world clinical practice that allows patients to switch treatments when desired outcome is not achieved. The proposed design increases efficiency by two strategies: 1) Allowing participants to switch treatments so that each participant can have more than one observation and hence it is possible to control for participant specific variability to increase statistical power; and 2) Utilizing RAR to allocate more participants to the promising arms such that ethical and efficient studies will be achieved. Extensive simulations were conducted and showed that, compared with trials where each participant receives one treatment, the proposed participants reusing RAR design can achieve comparable power with a smaller sample size and a shorter trial duration, especially when the accrual rate is low. The efficiency gain decreases as the accrual rate increases.
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.